Abstract:
An assembly includes: first and second printed circuit boards (PCBs), the PCBs being disposed generally parallel to each other; a first coaxial connector mounted to the first PCB, the first coaxial connector comprising a first inner contact and a first outer connector body, the first outer connector body having a first thickness; and a second coaxial connector mounted to the second PCB, the second axial connector comprising, a second inner contact and a second outer connector body. The second outer connector body includes an engagement surface, the engagement surface being flexible in a direction normal to the second PCB, the engagement surface having a second thickness that is greater than the first thickness.
Abstract:
A retractable pin includes: a cylindrical body, a retractable member with an insertion cavity at one end, and a spring disposed in a spring cavity defined by the combination of the retractable member and the cylindrical body. Upon application of a force to a free end of the retractable member, the retractable member is configured to retract into the cylindrical body by means of compression of the spring. This invention is further directed to a coaxial connector including a retractable pin as described above.
Abstract:
A 4.3/10 coaxial connector configured to receive a mating 4.3/10 connector includes: an inner contact; a dielectric spacer: and an outer contact, the dielectric spacer separating the inner contact and the outer contact. The outer contact includes an outer wall and a plurality of spring fingers, the spring fingers configured to deflect radially inwardly when the mating 4.3/10 connector is mated. The connector further comprises blocking structure that prevents mating of a Mini-Din connector.
Abstract:
A method of forming a joint between a coaxial cable and, a coaxial connector includes the steps of: preparing a cable having an inner conductor, a dielectric, a corrugated outer conductor surrounding the dielectric layer, and a jacket such that an end of the inner conductor is exposed, an end of the outer conductor is exposed arid is flattened to form a ring devoid of corrugations, and a portion of the dielectric layer is cored out to form a solder chamber between the inner conductor and the ring of the outer conductor; preparing an assembly comprising a coaxial connector comprising an inner contact, a dielectric spacer, and an outer conductor body having a tail, with a solder preform encircling the tail; inserting the tail and solder preform into the solder chamber; and melting the solder preform to create a joint between the ring and the tail.
Abstract:
The present disclosure describes a coaxial cable-connector assembly. The coaxial cable-connector assembly including a coaxial cable, a coaxial connector, and a polymeric sleeve. The outer connector body is swaged or crimped onto the polymeric sleeve. An end of a corrugated outer conductor of the coaxial cable is flared radially outwardly to form a flared end that secures the polymeric sleeve onto the coaxial cable. The polymeric sleeve separates the corrugated outer conductor of the coaxial cable from the outer conductor body of the coaxial connector to prevent direct radial electrical connection therebetween and the polymeric sleeve axially forces the flared end of the outer conductor of the coaxial cable in contact with a shoulder of the outer connector body of the coaxial connector. Additional coaxial cable-connector assemblies and related methods of assembling the same are described herein.
Abstract:
An assembly includes: first and second printed circuit boards (PCBs), the PCBs being disposed generally parallel to each other; a first coaxial connector mounted to the first PCB, the first coaxial connector comprising a first inner contact and a first outer connector body, the first outer connector body having a first thickness; and a second coaxial connector mounted to the second PCB, the second axial connector comprising, a second inner contact and a second outer connector body. The second outer connector body includes an engagement surface, the engagement surface being flexible in a direction normal to the second PCB, the engagement surface having a second thickness that is greater than the first thickness.
Abstract:
An assembly includes: first and second printed circuit boards (PCBs), the PCBs being disposed generally parallel to each other; a first coaxial connector mounted to the first PCB, the first coaxial connector comprising a first inner contact and a first outer connector body, the first outer connector body having a first thickness; and a second coaxial connector mounted to the second PCB, the second axial connector comprising a second inner contact and a second outer connector body. The second outer connector body includes an engagement surface, the engagement surface being flexible in a direction normal to the second PCB, the engagement surface having a second thickness that is greater than the first thickness.
Abstract:
A method of forming a solder joint between a coaxial cable and a coaxial connector includes the steps of: positioning a solder element between an end of an outer conductor of the coaxial cable and a connector body of the connector, wherein the solder element is positioned within a vacuum chamber; melting the solder element to form a solder joint between the outer conductor and the connector body, the solder joint including a lower surface formed by contact with a mounting structure; and applying suction to the melting solder element to reduce the formation of bubbles within the solder joint.
Abstract:
A 4.3/10 coaxial connector configured to receive a mating 4.3/10 connector includes: an inner contact; a dielectric spacer; and an outer contact, the dielectric spacer separating the inner contact and the outer contact. The outer contact includes an outer wall and a plurality of spring fingers, the spring fingers configured to deflect radially inwardly when the mating 4.3/10 connector is mated. The connector further comprises blocking structure that prevents mating of a Mini-Din connector.
Abstract:
Tower systems suitable for use at cellular base stations include a tower, an antenna mounted on the tower, a remote radio head mounted on the tower and a power supply. A power cable having a power supply conductor and a return conductor is connected between the power supply and the remote radio head. A shunt capacitance unit that is separate from the remote radio head that is electrically coupled between the power supply conductor and the return conductor of the power cable.