Abstract:
An improved content indexing (CI) system is disclosed herein. For example, the improved CI system may include a distributed architecture of client computing devices, media agents, a single backup and CI database, and a pool of servers. After a file backup occurs, the backup and CI database may include file metadata indices and other information associated with backed up files. Servers in the pool of servers may, in parallel, query the backup and CI database for a list of files assigned to the respective server that have not been content indexed. The servers may then request a media agent to restore the assigned files from secondary storage and provide the restored files to the servers. The servers may then content index the received restored files. Once the content indexing is complete, the servers can send the content index information to the backup and CI database for storage.
Abstract:
Systems and methods for storage pruning can enable users to delete, edit, or copy backed up data that matches a pattern. Storage pruning can enable fine-grain deletion or copying of these files from backups stored in secondary storage devices. Systems and methods can also enable editing of metadata associated with backups so that when the backups are restored or browsed, the logical edits to the metadata can then be performed physically on the data to create a custom restore or a custom view. A user may perform operations such as renaming, deleting, modifying flags, and modifying retention policies on backed up items. Although the underlying data in the backup may not change, the view of the backup data when the user browses the backup data can appear to include the user's changes. A restore of the data can cause those changes to be performed on the backup data.
Abstract:
Systems and methods for storage pruning can enable users to delete, edit, or copy backed up data that matches a pattern. Storage pruning can enable fine-grain deletion or copying of these files from backups stored in secondary storage devices. Systems and methods can also enable editing of metadata associated with backups so that when the backups are restored or browsed, the logical edits to the metadata can then be performed physically on the data to create a custom restore or a custom view. A user may perform operations such as renaming, deleting, modifying flags, and modifying retention policies on backed up items. Although the underlying data in the backup may not change, the view of the backup data when the user browses the backup data can appear to include the user's changes. A restore of the data can cause those changes to be performed on the backup data.
Abstract:
A method and system for remotely executing commands at a client computing device. The method comprises receiving a selection of commands to transmit to a group of client computing devices via a webserver. The group of client computing devices, as well as the selected commands, are associated with a group identifier. The method validates access privileges of the administrator to transmit the selected commands to the group of client computing devices. Upon receipt of the selected commands, the webserver transmits the selected commands to at least one registered proxy server. The registered proxy server then determines one or more client identifiers associated with the group identifier. Each client identifier is assigned to a client computing device. Upon receipt of the selected commands, the registered proxy server transmits the selected commands to client computing devices in the group of client computing devices matching the determined client identifiers.
Abstract:
A system according to certain aspects improves the process of sending emails containing attachments. The system can detect a request to send an email containing attachments to one or more recipients, create a copy of the attachments on a network storage device, replace the attachments contained in the email with links to the copies of the attachments, and send the email containing the links to the one or more recipients.
Abstract:
Systems and methods for storage pruning can enable users to delete, edit, or copy backed up data that matches a pattern. Storage pruning can enable fine-grain deletion or copying of these files from backups stored in secondary storage devices. Systems and methods can also enable editing of metadata associated with backups so that when the backups are restored or browsed, the logical edits to the metadata can then be performed physically on the data to create a custom restore or a custom view. A user may perform operations such as renaming, deleting, modifying flags, and modifying retention policies on backed up items. Although the underlying data in the backup may not change, the view of the backup data when the user browses the backup data can appear to include the user's changes. A restore of the data can cause those changes to be performed on the backup data.
Abstract:
A system for providing user access to electronic mail includes an email client and an email server. The email client receives and communicates a user interaction with an email message The email server that receives the communication, determines whether the email message stored in a live database or in a backup storage. Upon determination that the email message is stored in a backup storage, the email server performs a message exchange with a backup storage system to perform the user-requested action.
Abstract:
Disclosed methods and systems leverage resources in a storage management system to partially synchronize primary data files based on synchronizing selected portions thereof without regard to changes that may be occurring in other non-synchronized portions. Accordingly, a number of primary data files may be partially synchronized by synchronizing designated portions thereof via auto-restore operations from backup data. This approach relies on storage management resources to designate portions of source data that is to be kept synchronized across any number of targets; detect changes to the designated portions; back up changes to secondary storage; and distribute the changes from secondary storage to the associated targets, with minimal impact to the primary data environment. The approach may be mutually applied, so that changes in any one of an associated group of source data files may be likewise detected, backed up, and distributed to the other members of the group.
Abstract:
Systems and methods for storage pruning can enable users to delete, edit, or copy backed up data that matches a pattern. Storage pruning can enable fine-grain deletion or copying of these files from backups stored in secondary storage devices. Systems and methods can also enable editing of metadata associated with backups so that when the backups are restored or browsed, the logical edits to the metadata can then be performed physically on the data to create a custom restore or a custom view. A user may perform operations such as renaming, deleting, modifying flags, and modifying retention policies on backed up items. Although the underlying data in the backup may not change, the view of the backup data when the user browses the backup data can appear to include the user's changes. A restore of the data can cause those changes to be performed on the backup data.
Abstract:
Disclosed methods and systems leverage resources in a storage management system to partially synchronize primary data files based on synchronizing selected portions thereof without regard to changes that may be occurring in other non-synchronized portions. Accordingly, a number of primary data files may be partially synchronized by synchronizing designated portions thereof via auto-restore operations from backup data. This approach relies on storage management resources to designate portions of source data that is to be kept synchronized across any number of targets; detect changes to the designated portions; back up changes to secondary storage; and distribute the changes from secondary storage to the associated targets, with minimal impact to the primary data environment. The approach may be mutually applied, so that changes in any one of an associated group of source data files may be likewise detected, backed up, and distributed to the other members of the group.