Abstract:
This invention relates to methods and apparatus for separating liquid products and catalyst particles from a slurry used in a Fischer-Tropsch reactor system. The preferred embodiments of the present invention are characterized by a separation system that uses a sedimentation chamber, which contains at least one inclined channel that enhances the settling of particles within the slurry. The enhanced settling separates the slurry into a catalyst-rich bottom stream and a catalyst-lean overhead stream. The catalyst-rich bottom product stream is preferably recycled to the reactor, while the catalyst-lean overhead stream can be further processed by a secondary separation system to produce valuable synthetic fuels. The inclined channel may be provided by a structure selected from the group consisting of tube, pipe, conduit, sheets, trays, walls, plates, and combinations thereof.
Abstract:
A process for producing hydrocarbons comprises providing a multi-tubular reactor having at least 100 tubes units containing a catalyst, each tube being between 2 and 5 meters tall and in thermal contact with a cooling fluid; feeding hydrogen and carbon monoxide to each tube at a linear gas superficial velocity less than about 60 cm/s; and converting the gas feedstream to hydrocarbons on the catalyst, wherein the yield of hydrocarbons in each tube is greater than 100 (kg hydrocarbons)/hr/(m3 reaction zone). Each tube may have an internal diameter greater than 2 centimeters. The catalyst may be active for Fischer Tropsch synthesis and may comprise cobalt or iron. The maximum difference in the radially-averaged temperature between two points that are axially spaced along the reactor is less than 15null C., preferably less than 10null C. The catalyst loading or intrinsic activity may vary along the length of the reactor.