-
公开(公告)号:US11377003B2
公开(公告)日:2022-07-05
申请号:US16603014
申请日:2018-02-05
发明人: Max Werhahn , Peter Marienfeld
摘要: The invention relates to a suspension system (1), preferably a driver seat (1), comprising a first suspension part (10), preferably a frame (10) of the driver seat (1); a second suspension part (11), preferably a seat surface (11) of the driver seat (1), wherein the two suspension parts (10, 11) are movable relative to each other in at least one first spatial direction (Z), preferably in the vertical direction (Z); a kinematic system (12), preferably a scissor kinematic system (12) which is designed to connect the two suspension parts (10, 11) in a movable manner relative to each other at least in the first spatial direction (Z); a suspension device (13) which is designed to support the static load of the second suspension part (11); and an actuator (2) which is designed to introduce a force bidirectionally between the two suspension parts (10, 11) and thereby actively damp the relative movement between the two suspension parts (10, 11). The suspension system (1) is characterized in that the actuator (2) has a bearing (28), preferably a ball bearing (28), which is arranged within the power flow between the two suspension parts (10, 11) such that an axial load can be kept away from the driven axle of the actuator (2) at least partly, preferably completely.
-
公开(公告)号:US20200031256A1
公开(公告)日:2020-01-30
申请号:US16603014
申请日:2018-02-05
发明人: Max Werhahn , Peter Marienfeld
摘要: The invention relates to a suspension system (1), preferably a driver seat (1), comprising a first suspension part (10), preferably a frame (10) of the driver seat (1); a second suspension part (11), preferably a seat surface (11) of the driver seat (1), wherein the two suspension parts (10, 11) are movable relative to each other in at least one first spatial direction (Z), preferably in the vertical direction (Z); a kinematic system (12), preferably a scissor kinematic system (12) which is designed to connect the two suspension parts (10, 11) in a movable manner relative to each other at least in the first spatial direction (Z); a suspension device (13) which is designed to support the static load of the second suspension part (11); and an actuator (2) which is designed to introduce a force bidirectionally between the two suspension parts (10, 11) and thereby actively damp the relative movement between the two suspension parts (10, 11). The suspension system (1) is characterized in that the actuator (2) has a bearing (28), preferably a ball bearing (28), which is arranged within the power flow between the two suspension parts (10, 11) such that an axial load can be kept away from the driven axle of the actuator (2) at least partly, preferably completely.
-
公开(公告)号:US09951843B2
公开(公告)日:2018-04-24
申请号:US15319380
申请日:2015-04-09
发明人: Robert Genderjahn , Max Werhahn , Peter Marienfeld
CPC分类号: F16F13/30 , F16F13/085 , F16F13/264
摘要: The invention relates to a hydraulic bearing (2) with a support spring (36), a working chamber (4) which is at least partly surrounded by the support spring (36) and which is filled with a hydraulic fluid, a control membrane (12) which is designed to change a working chamber volume of the working chamber (4), and an electromagnetic actuator (16) for deflecting the control membrane (12), wherein the actuator (16) comprises a stator (18) and an armature (20) which can be moved in the longitudinal direction L of the stator (18); the armature (20) is mechanically connected to the control membrane (12); the stator (18) has a stator conductive element (26) made of a ferromagnetic material; the stator conductive element (26) has an upper stator collar (32) which extends in the transverse direction Q of the stator (18) and a lower stator collar (28) which extends in the transverse direction Q of the stator (18); the armature (20) has an armature conductive element (72) made of a ferromagnetic material; the armature conductive element (72) has an upper armature collar (58) which extends in the transverse direction Q of the stator (18) and a lower armature collar (54) which extends in the transverse direction Q of the stator (18); the upper stator collar (32) and the upper armature collar (58) face each other; and the lower stator collar (28) and the lower armature collar (54) face each other. The control membrane (12) is designed for a maximum deflection a in the deflection direction of the control membrane, and the mutually facing upper and/or lower collars (32, 58 or 28, partly overlap over an overlap length u in the longitudinal direction L of the stator (18) such that a ratio of the overlap length u to the maximum deflection a lies between 0.1 and 1.5. The invention further relates to a motor vehicle with a corresponding hydraulic bearing (2).
-
4.
公开(公告)号:US20170141665A1
公开(公告)日:2017-05-18
申请号:US15319833
申请日:2015-06-15
发明人: Robert Genderjahn , Max Werhahn , Peter Marienfeld
CPC分类号: H02K33/16 , F16F13/266 , F16M11/043 , F16M11/18 , H02K1/17 , H02K1/34
摘要: The invention relates to an electromagnetic linear actuator (16) with a stator (18) and an armature (20) which can be moved relative to the stator (18). The stator (18) has at least one permanent magnet (22) and at least one coil (24), the stator (18) has a conductive element (26) made of a ferromagnetic material, the conductive element (26) extends over the at least one permanent magnet (22) and/or the at least one coil (26), and the armature (18) forms a yoke (34) made of a ferromagnetic material in the longitudinal direction L for the conductive element (26). The invention further relates to a hydraulic bearing (2) with a support spring (36), a working chamber (4), which is filled with a hydraulic fluid, a compensating chamber (6), a partition (8) which is arranged between the working chamber (4) and the compensating chamber (6), a throttle channel (10) which is formed between the working chamber (4) and the compensating chamber (6) for exchanging hydraulic fluid, and a control membrane (12) which is paired with the partition (8) and which is designed to change a working chamber volume (14) of the working chamber (4). The hydraulic bearing (2) has an electromagnetic linear actuator (16) according to the invention, and the armature (20) is mechanically connected to the control membrane (12). The invention additionally relates to a motor vehicle with such a hydraulic bearing (2).
-
公开(公告)号:US20170130801A1
公开(公告)日:2017-05-11
申请号:US15319380
申请日:2015-04-09
发明人: Robert Genderjahn , Max Werhahn , Peter Marienfeld
CPC分类号: F16F13/30 , F16F13/085 , F16F13/264
摘要: The invention relates to a hydraulic bearing (2) with a support spring (36), a working chamber (4) which is at least partly surrounded by the support spring (36) and which is filled with a hydraulic fluid, a control membrane (12) which is designed to change a working chamber volume of the working chamber (4), and an electromagnetic actuator (16) for deflecting the control membrane (12), wherein the actuator (16) comprises a stator (18) and an armature (20) which can be moved in the longitudinal direction L of the stator (18); the armature (20) is mechanically connected to the control membrane (12); the stator (18) has a stator conductive element (26) made of a ferromagnetic material; the stator conductive element (26) has an upper stator collar (32) which extends in the transverse direction Q of the stator (18) and a lower stator collar (28) which extends in the transverse direction Q of the stator (18); the armature (20) has an armature conductive element (72) made of a ferromagnetic material; the armature conductive element (72) has an upper armature collar (58) which extends in the transverse direction Q of the stator (18) and a lower armature collar (54) which extends in the transverse direction Q of the stator (18); the upper stator collar (32) and the upper armature collar (58) face each other; and the lower stator collar (28) and the lower armature collar (54) face each other. The control membrane (12) is designed for a maximum deflection a in the deflection direction of the control membrane, and the mutually facing upper and/or lower collars (32, 58 or 28, partly overlap over an overlap length u in the longitudinal direction L of the stator (18) such that a ratio of the overlap length u to the maximum deflection a lies between 0.1 and 1.5. The invention further relates to a motor vehicle with a corresponding hydraulic bearing (2).
-
-
-
-