Abstract:
Embodiments described herein are directed to a lighting fixture including a lightguide that distributes light from a major surface, a light assembly including light sources arranged linearly, and a frame including a means for providing a force that urges the light assembly against an edge of the lightguide. A standoff or spacer can provide an air gap between a light source of the light assembly and the waveguide edge. In various embodiments, the lighting fixture may incorporate a spring, a spring finger, a spring clip, a screw, or other means for securing the light assembly against the edge of the lightguide. In this manner, substantially all light provided by the light assembly is emitted into the edge of the lightguide. The fixture is formed to accommodate tolerances among elements of the lighting fixture, while maintaining the light assembly securely against the edge of the lightguide.
Abstract:
A light fixture includes a member having a substantially frusto-conical shape. A channel extends between a wide top end of the member and a narrower bottom end of the member. The member includes multiple surfaces (“facets”) disposed around its outer surface. Each facet is configured to receive one or more light emitting diodes (“LEDs”) in a linear or non-linear array. Each facet can be integral to the member or coupled to the member. The channel is configured to transfer heat generated by the LEDs through convection. Fins can be disposed within the channel, extending from the inner surface of the member to an inner channel. The fins are configured to transfer heat away from, and provide a greater surface area for convecting heat away from, the member. For example, one or both of the channels can transfer heat by a venturi effect.
Abstract:
A light fixture includes a member having a substantially frusto-conical shape. A channel extends between a wide top end of the member and a narrower bottom end of the member. The member includes multiple surfaces (“facets”) disposed around its outer surface. Each facet is configured to receive one or more light emitting diodes (“LEDs”) in a linear or non-linear array. Each facet can be integral to the member or coupled to the member. The channel is configured to transfer heat generated by the LEDs through convection. Fins can be disposed within the channel, extending from the inner surface of the member to an inner channel. The fins are configured to transfer heat away from, and provide a greater surface area for convecting heat away from, the member. For example, one or both of the channels can transfer heat by a venturi effect.
Abstract:
Embodiments described herein are directed to a lighting fixture including a lightguide that distributes light from a major surface, a light assembly including light sources arranged linearly, and a frame including a means for providing a force that urges the light assembly against an edge of the lightguide. A standoff or spacer can provide an air gap between a light source of the light assembly and the waveguide edge. In various embodiments, the lighting fixture may incorporate a spring, a spring finger, a spring clip, a screw, or other means for securing the light assembly against the edge of the lightguide. In this manner, substantially all light provided by the light assembly is emitted into the edge of the lightguide. The fixture is formed to accommodate tolerances among elements of the lighting fixture, while maintaining the light assembly securely against the edge of the lightguide.