摘要:
A pole of a high- and/or medium-voltage circuit breaker, including an insulating housing, at least one, interruption chamber which is positioned inside the insulating housing and contains at least a moving contact and at least a fixed contact. A device for measuring the electric current flowing through the pole, and a dielectric gas, the particularity of which is the fact that said device for measuring the electric current flowing through the pole includes an optical current sensor arranged within a volume of the pole that is occupied by the dielectric gas.
摘要:
A fiber-optic sensor head is disclosed for an optical current or magnetic-field sensor which can have an optical fiber which includes a magnetooptically active sensor fiber which is optically connected to at least one polarization-defining element. The sensor fiber can be arranged in a magnetic field to be measured or around a conductor carrying current to be measured and can be in the form of a coil, with the coil defining a coil plane (A) with a surface normal (Ns), and with the at least one polarization-defining element having a marked axis (f). The sensor head can be flexible in the area of the sensor fiber, and an adjustment means can be provided for adjustment of a predeterminable angle β between the marked axis,(f) and the surface normal (Ns) or for adjustment of predeterminable angles β, β′ between the marked axes (f) and the surface normal (Ns).
摘要:
A method is provided for tuning the fiber optic retarder of a fiber optic current sensor towards a desired temperature dependence, the sensing fiber is exposed to a magnetic field or corresponding electric current and the sensor signal as well as the signal's dependence on the retarder temperature are measured. From this initial sensor signal and its temperature dependence, a target sensor signal can be determined, at which the dependence on the retarder temperature equals a desired value. Then, the retarder is thermally treated until the sensor signal reaches the target value. The method obviates the need for repetitively measuring the temperature dependence during the tuning process.
摘要:
The invention relates to a fiberoptic current or magnetic field sensor having a plurality of sensor heads, and to a corresponding measurement method. The sensor has a light source: N≧2 sensor heads; at least one phase modulation unit; a detector; a control and evaluation unit. The at least one phase modulation unit is connected to at least one of the sensor heads. Lightwaves can be differentially phase-modulated in a non-reciprocal fashion by means of the at least one phase modulation unit. Modulation amplitudes φ0,n and modulation frequencies vn are selected as a function of modulation-relevant optical path lengths ln.
摘要翻译:本发明涉及具有多个传感器头的光纤电流或磁场传感器,以及相应的测量方法。 传感器有一个光源:N> = 2个传感头; 至少一个相位调制单元; 检测器 一个控制和评估单位。 至少一个相位调制单元连接到至少一个传感器头。 光波可以通过至少一个相位调制单元以不可逆的方式进行差分相位调制。 作为调制相关光程长度l N n N的函数,选择调制幅度Φ0,n N和调制频率v N n N。
摘要:
The fiber-optic sensor head (2) for a current or magnetic field sensor comprises an optical fiber which contains a magnetooptically active sensor fiber (3) and at least one polarization-maintaining supply fiber (5), which are optically connected, with the sensor fiber (3) having its fiber protective sheath removed. The sensor head (2) furthermore contains a capillary (6), in which at least the sensor fiber (3) is arranged. Furthermore, the sensor head (2) can be bent in the area of the sensor fiber (3), and a friction reducing means (7) is provided in the capillary (6), in order to reduce the friction between the sensor fiber (3) and the capillary (6). The friction reducing means (7) is advantageously an oil or a dry lubricating means (7). The capillary (6) is advantageously encased by a capillary casing (8). The sensor (2) allows very largely temperature-dependent measurements, is easy to install and allows measurements on large cross-section conductors.
摘要:
The subject matter of the present invention is a fiber-optic outdoor high-voltage sensor 1. The known sensor principle is based on the fact that a piezoelectric quartz cylinder 3 wound with a glass fiber 4a effects a voltage-proportional fiber strain which is measured interferometrically. According to the invention, a 420 kV outdoor sensor 1 is created by virtue of the fact that several quartz cylinders 3 and electrically conductive spacing elements 5 are arranged in an alternating fashion one behind another and are sealed in a silicone-shielded 17 insulating tube 16 by means of polyurethane 18 or silicone 21. Dividing the high voltage between several spaced, E-field integrating sensor elements 2 permits simple field control and a very high measuring accuracy. In addition, the fiber-optic voltage sensor 1 is distinguished by a low outlay on insulation, compactness and low weight, and can easily be scaled to other voltage levels and be effectively combined with optical current sensors 38.
摘要:
A method is described for producing a fiberoptic waveguide with a basic segment (11) and a phase shift segment (12), the basic segment (11) and phase shift segment (12) having fiber cores (K) of the same form and the fiber cores being aligned at a defined angle (&agr;) to one another. In the method, use is made of an optical fiber (1) having a fiber core (K) of the abovenamed form, which fiber is twisted at least approximately by the abovenamed defined angle (&agr;) and held fixed in this torsional position. Subsequently, a stress-relief zone (13) is heated inside the twisted fiber (1) until the torsion is released inside the stress-relief zone (13) and the basic segment (11) is produced on one side of the stress-relief zone (13) and the phase shift segment (12) is produced on the other side. In this case, the fixing of the torsional position is maintained until after solidification of the stress-relief zone (13).
摘要:
A high-voltage component, having a first end and a second end, whereby the first end is on a high-voltage potential with respect to the second end. An insulating part, is arranged between the first end and the second end, and an optical fiber is integrated in the high-voltage component and extends from the first end to the second end. A capillary extends from the first end to the second end and is arranged within the insulating part. The inside diameter of the capillary exceeds the outside diameter of the fiber, and the fiber is arranged within the capillary. The capillary includes a protective medium to achieve a dielectric strength in the capillary, which dielectric strength is suitable for the operating conditions.
摘要:
The fiber-optic sensor head (2) for a current or magnetic field sensor comprises an optical fiber which contains a magnetooptically active sensor fiber (3) and at least one polarization-maintaining supply fiber (5), which are optically connected, with the sensor fiber (3) having its fiber protective sheath removed. The sensor head (2) furthermore contains a capillary (6), in which at least the sensor fiber (3) is arranged. Furthermore, the sensor head (2) can be bent in the area of the sensor fiber (3), and a friction reducing means (7) is provided in the capillary (6), in order to reduce the friction between the sensor fiber (3) and the capillary (6). The friction reducing means (7) is advantageously an oil or a dry lubricating means (7). The capillary (6) is advantageously encased by a capillary casing (8). The sensor (2) allows very largely temperature-dependent measurements, is easy to install and allows measurements on large cross-section conductors.
摘要:
A high-voltage component, having a first end and a second end, whereby the first end is on a high-voltage potential with respect to the second end. An insulating part, is arranged between the first end and the second end, and an optical fiber is integrated in the high-voltage component and extends from the first end to the second end. A capillary extends from the first end to the second end and is arranged within the insulating part. The inside diameter of the capillary exceeds the outside diameter of the fiber, and the fiber is arranged within the capillary. The capillary includes a protective medium to achieve a dielectric strength in the capillary, which dielectric strength is suitable for the operating conditions.