Abstract:
An electrolyte solution including a solvent, the solvent containing a compound (1a) represented by the following formula (1a); and a compound (2) represented by the following formula (2): wherein Re is a C1-C5 linear or branched alkyl group optionally containing an ether bond; Rf is a C1-C5 linear or branched alkyl group optionally containing an ether bond; and at least one of Re or Rf contains a fluorine atom. Also disclosed is an electrochemical device including the electrolyte solution, a lithium-ion secondary battery including the electrolyte solution, and a module including the electrochemical device or the lithium-ion secondary battery.
Abstract:
An electrolyte solution for an electrochemical device, such as a lithium secondary battery, or module. The electrolyte solution contains: a solvent that contains a fluorinated acyclic carbonate having a fluorine content of 33 to 70 mass %; at least one organosilicon compound selected from a compound represented by the formula (1): (R11)n11—M11—O—SiR12R13R14 and a compound represented by the formula (2): R21R22R23—Si—F; a lithium salt (3) that contains an oxalato-complex as an anion; and a lithium salt (4) represented by the formula (4): LizM31FxOy, where R11, M11, R12, R13, R14, R21, R22, R23 and M31 are as defined herein.
Abstract:
The present invention provides an electrolyte solution that is capable of dealing with an increased voltage of an electrochemical device, as well as capable of improving the high-temperature storage characteristics and cycle characteristics of the electrochemical device, and an electrochemical device. The electrolyte solution includes a solvent containing a fluorinated saturated cyclic carbonate and a fluorinated acyclic carbonate; at least one sulfur-containing compound selected from the group consisting of compounds having a —SO2— bond, compounds having a —SO3— bond, and compounds having a —SO4— bond, and an electrolyte salt. The fluorinated acyclic carbonate has a fluorine content of 31.0 to 70.0 mass %.
Abstract:
An electrolyte solution containing a solvent and a compound represented by the following formula (1), wherein R1 is a C1-C5 linear or branched non-fluorinated alkyl group optionally containing an ether bond. Also disclosed is an electrochemical device including the electrolyte solution, a lithium ion secondary battery including the electrolyte solution and a module including the electrochemical device or lithium ion secondary battery.
Abstract:
Provided is an electrolyte solution for secondary batteries that are less likely to generate gas and excellent in high-temperature storage characteristics; an electrochemical device using the electrolyte solution; and a module using the electrochemical device. The electrolyte solution contains a solvent and an electrolyte salt, the solvent containing a fluorine-containing acyclic carbonate represented by the formula (1) and a fluorine-containing maleic anhydride represented by the formula (2). The electrolyte solution contains not less than 0.001 mass % but less than 90 vol % of the fluorine-containing acyclic carbonate, and the electrolyte solution contains 0.001 to 20 mass % of the fluorine-containing maleic anhydride.
Abstract:
The invention provides an electrolyte solution capable of providing an electrochemical device having low resistance and excellent high-temperature storage characteristics and cycle characteristics. The electrolyte solution contains lithium fluorosulfonate and a solvent containing a compound (1) represented by the following formula (1):CF2HCOOCH3.
Abstract:
An electrolyte solution containing a solvent. The solvent contains a compound (1) represented by the following formula (1), wherein Ra, Rb, Rc, and Rd are the same as or different from each other, and are each —H, —F, —CH3, or —CF3; at least one of Ra, Rb, Rc, or Rd is —F or —CF3; and at least one of Ra, Rb, Rc, or Rd is —CH3, and a compound (2) represented by the following formula (2), wherein Re is a C1-C5 linear or branched alkyl or alkoxy group optionally containing an ether bond; Rf is a C1-C5 linear or branched alkyl group optionally containing an ether bond; and at least one of Re or Rf contains a fluorine atom. Also disclosed is an electrochemical device including the electrolyte solution, a lithium-ion secondary battery including the electrolyte solution and a module including the electrochemical device.
Abstract:
The present invention provides an electrolytic solution capable of providing an electrochemical device, such as a lithium ion secondary battery, or a module that has excellent high-temperature storage performance. The electrolytic solution contains: a homocyclic compound other than aromatic compounds; and a cyclic dicarbonyl compound. The homocyclic compound contains at least one group selected from the group consisting of a nitrile group and an isocyanate group.
Abstract:
The present invention provides an electrolytic solution capable of providing an electrochemical device (e.g., a lithium ion secondary battery) or a module that is less likely to generate gas even in high-temperature storage and has high capacity retention even after high-temperature storage. The present invention relates to an electrolytic solution which may contain a compound represented by Y21R21C—CY22R22 wherein R21 and R22 may be the same as or different from each other, and are each H, an alkyl group, or a halogenated alkyl group; Y21 and Y22 may be the same as or different from each other, and are each —OR23 or a halogen atom; and R23 is H, an alkyl group, or a halogenated alkyl group.
Abstract:
The present invention aims to provide an electrolyte solution that suppresses generation of gas. The electrolyte solution of the present invention includes a non-aqueous solvent (I) containing one or both of a fluorinated cyclic carbonate and a fluorinated acyclic carbonate; an electrolyte salt (II); and a compound (III) represented by the following formula (1): wherein R1 is a C1-C20 linear or branched alkenyl or alkyl group or a C3-C20 alkyl group having a cyclic structure; m is 0 or 1; R2 is a C1-C20 linear or branched alkylene group or a C3-C20 alkylene group having a cyclic structure, R1 and R2 each may have an oxygen atom between carbon atoms if R1 and R2 each have two or more carbon atoms, but the oxygen atom is not adjacent to another oxygen atom.