Distributed industrial energy operation optimization platform automatically constructing intelligent models and algorithms

    公开(公告)号:US11487273B1

    公开(公告)日:2022-11-01

    申请号:US17569671

    申请日:2022-01-06

    Abstract: A distributed industrial energy operation optimization platform which is capable of automatically constructing intelligent models and algorithms, is divided into three parts: a modeling terminal, a background service and a human-computer interface. The models like data pre-processing, energy generation-consumption-storage trend forecasting and optimal scheduling decision models are encapsulated in the modeling terminal as different visualization modules facing with multiple categories production scenarios, by dragging which the complex functional models can be realized conveniently. The background service is capable of automatically constructing the training samples and the production plans/manufacturing signals series according to the device model requirements of each edge side, interacts with the trained intelligent models through corresponding interfaces, and the computing results are saved in the specified relational database. The computing results are displayed through a friendly customer human-computer interface, and the real-time state of current working condition can also be adjusted.

    Method for construction of long-term prediction intervals and its structural learning for gaseous system in steel industry

    公开(公告)号:US11526789B2

    公开(公告)日:2022-12-13

    申请号:US16500052

    申请日:2018-09-12

    Abstract: The present invention belongs to the field of information technology, involving the techniques of fuzzy modeling, reinforcement learning, parallel computing, etc. It is a method combining granular computing and reinforcement learning for construction of long-term prediction interval and determination of its structure. Adopting real industrial data, the present invention constructs multi-layer structure for assigning information granularity in unequal length and establishes corresponding optimization model at first. Then considering the importance of the structure on prediction accuracy, Monte-Carlo method is deployed to learn the structural parameters. Based on the optimal multi-layer granular computing structure along with implementing parallel computing strategy, the long-term prediction intervals of gaseous generation and consumption are finally obtained. The proposed method exhibits superiority on accuracy and computing efficiency which satisfies the demand of real-world application. It can be also generalized to apply on other energy systems in steel industry.

    Method for optimal scheduling decision of air compressor group based on simulation technology

    公开(公告)号:US11126765B2

    公开(公告)日:2021-09-21

    申请号:US16928672

    申请日:2020-07-14

    Abstract: The present invention provides a method for an optimal scheduling decision of an air compressor group based on a simulation technology, which belongs to the technical field of information. The present invention uses expert experience to construct an air compressor energy consumption model sample set, and applies a least squares algorithm to learn relevant parameters of an air compressor energy consumption model; uses maximum energy conversion efficiency and minimum economic cost based on an equivalent electricity as target functions, and applies the simulation technology and a depth first tree search algorithm to solve a multi-target optimal scheduling model of the air compressor group; and finally uses a fuzzy logic theory to describe the preferences of decision makers, and introduces the decision maker preference information into interactive decision making, thereby assisting production staff to formulate safe, economical, efficient and environmentally friendly operation schemes to achieve an operation mode of maximum resource utilization of the air compressor group. The method also has wide application value in different industrial fields.

Patent Agency Ranking