Abstract:
A method for determining a state of credibility of measurements of an angle-of-attack sensor of an aircraft is provided. This method includes at least one coherence test between angle-of-attack measurements from said angle-of-attack sensor, and the measurements of a flight characteristic of the aircraft, distinct from the angle-of-attack. The coherence test includes determining an angle-of-attack value from said angle-of-attack sensor, determining said flight characteristic of the aircraft, determining a value of at least one indicator of the coherence of the angle-of-attack value with the value of said flight characteristic, and activating a low state of credibility, in which the measurements of said angle-of-attack sensor are deemed unreliable, or an intermediate state of credibility, in which the measurements from said angle-of-attack sensor are deemed coherent with said flight characteristic, based on the value of said coherence indicator.
Abstract:
A device is provided for assisting in the piloting of a vehicle, in particular an aircraft. The device includes a surface displaying images and a display management unit for images designed to be displayed on the display surface superimposed on a view of the outside landscape. The management unit is capable of commanding the display of piloting information images on the display surface. The management unit is capable of commanding the display, for at least one of the piloting information images, of an animation intended to attract a user's attention to that piloting information image, the animation comprising the display of an alert image and the shrinkage of the alert image.
Abstract:
A method for determining an estimated mass of an aircraft is provided. This method includes determining a first mass of the aircraft, from characteristics of the aircraft determined before or after takeoff of the aircraft, determining, during the flight of the aircraft, a second mass of the aircraft, from a lift equation of the aircraft expressing the mass of the aircraft as a function of information representative of the load factor of the aircraft, of a lift coefficient of the aircraft, of speed information of the aircraft and of a static pressure of a mass of air passed through by the aircraft, determined from measurements by sensors of the aircraft during the flight of the aircraft, evaluating the estimated mass at said determination moment, as a function of said first and second masses.
Abstract:
A method for determining a state of credibility of measurements made by sensors of an aircraft is provided. This method includes determining a speed of the aircraft, from static and total pressure measurements, determining a coefficient of lift of the aircraft from an incidence measurement and from said speed, determining a weight of the aircraft, determining if an equation of lift of the aircraft is satisfied, activating a state of optimal credibility, wherein the measurements made by said sensors are considered to be reliable if the said equation of lift is satisfied, activating a state of non-optimal credibility, wherein the measurements of at least one sensor are considered to be unreliable if the said equation of lift is not satisfied.
Abstract:
A method for determining a state of credibility of measurements made by sensors of an aircraft is provided. This method includes determining a speed of the aircraft, from static and total pressure measurements, determining a coefficient of lift of the aircraft from an incidence measurement and from said speed, determining a weight of the aircraft, determining if an equation of lift of the aircraft is satisfied, activating a state of optimal credibility, wherein the measurements made by said sensors are considered to be reliable if the said equation of lift is satisfied, activating a state of non-optimal credibility, wherein the measurements of at least one sensor are considered to be unreliable if the said equation of lift is not satisfied.