Additive manufacturing of a 3D part

    公开(公告)号:US11027493B2

    公开(公告)日:2021-06-08

    申请号:US16186094

    申请日:2018-11-09

    Abstract: Described is a computer-implemented method of additive manufacturing of a three-dimensional part. The method includes obtaining a surface representation of a 3D part in a 3D scene, the surface representation being enclosed inside a bounding volume, discretizing the scene into voxels, forming an unsigned distance field by storing a minimal distance value to the surface representation of the part for each voxel, determining one or more voxels located outside the bounding volume, the one or more voxels located outside the bounding volume being associated with a label, propagating by flood filling the label until a stopping condition is met, which is reaching a gradient inversion of the distance field, inverting the sign of the distance value of all unlabeled voxels so as to obtain a signed distance field, computing an iso-surface of the part at iso-value zero based on the signed distance field, and additive manufacturing the part.

    Designing a 3D modeled object via orientation optimization

    公开(公告)号:US12061850B2

    公开(公告)日:2024-08-13

    申请号:US17124386

    申请日:2020-12-16

    CPC classification number: G06F30/23 G06F30/10 G06T17/205

    Abstract: A computer-implemented method for designing a 3D modeled object. The 3D modeled object represents a mechanical part formed in a material having an anisotropic behavior with respect to a physical property. The method includes obtaining a 3D finite element mesh and data associated to the 3D finite element mesh. The data associated to the 3D finite element mesh includes a plurality of forces and boundary conditions. The plurality of forces forms multiple load cases. The method further comprises optimizing an orientation field distributed on the 3D finite element mesh with respect to an objective function. The objective function rewards orientation continuity with respect to the physical property. The optimizing is based on the 3D finite element mesh and on the data associated to the 3D finite element mesh. This constitutes an improved method for designing a 3D modeled object.

    3D finite element mesh of a 3D part that comprises a lattice structure

    公开(公告)号:US10748336B2

    公开(公告)日:2020-08-18

    申请号:US16229057

    申请日:2018-12-21

    Abstract: The disclosure notably relates to a computer-implemented method for designing a three-dimensional (3D) finite element mesh of a 3D part that comprises a lattice structure. The method includes superposing a regular tiling of cells with the solid representation of a 3D part, partitioning the cells into two groups, a first group of cells, each in contact with the solid representation of the 3D part, and a second group of cells, none in contact with the solid representation. The method also includes finite element meshing a boundary of the solid representation, extracting a boundary finite element mesh of the first group of cells, computing a Boolean union of the finite element mesh and the extracted boundary finite element mesh, finite element meshing a volume of the computed Boolean union and merging the finite element meshes of meshed volume of computed Boolean union and the cells of the second group of cells.

    3D finite element mesh of a 3D part that comprises a lattice structure

    公开(公告)号:US10796039B2

    公开(公告)日:2020-10-06

    申请号:US16230232

    申请日:2018-12-21

    Abstract: The disclosure notably relates to a computer-implemented method for designing a three-dimensional (3D) finite element mesh of a 3D part that includes a lattice structure. The method includes superposing a regular tiling of cells with a solid representation of the 3D part, partitioning the cells into two groups, a first group of cells, each in contact with the solid representation, and a second group of cells, none in contact with the solid representation. The method also includes computing a Boolean union of the first group of cells and the solid representation, the Boolean union forming a volume, finite element meshing the volume of the computed Boolean union while preserving the set of faces of the first group of cells that are shared with the second group of cells, and merging the finite element meshes of the cells of the second group and the meshed volume of the computed Boolean union.

    3D FINITE ELEMENT MESH OF A 3D PART THAT COMPRISES A LATTICE STRUCTURE

    公开(公告)号:US20190197205A1

    公开(公告)日:2019-06-27

    申请号:US16230232

    申请日:2018-12-21

    Abstract: The disclosure notably relates to a computer-implemented method for designing a three-dimensional (3D) finite element mesh of a 3D part that includes a lattice structure. The method includes superposing a regular tiling of cells with a solid representation of the 3D part, partitioning the cells into two groups, a first group of cells, each in contact with the solid representation, and a second group of cells, none in contact with the solid representation. The method also includes computing a Boolean union of the first group of cells and the solid representation, the Boolean union forming a volume, finite element meshing the volume of the computed Boolean union while preserving the set of faces of the first group of cells that are shared with the second group of cells, and merging the finite element meshes of the cells of the second group and the meshed volume of the computed Boolean union.

Patent Agency Ranking