Abstract:
A thermionic power generator includes an emitter generating thermions and a collector collecting the thermions. The emitter includes an emitter substrate having an electric conductivity, a low resistance layer stacked to the emitter substrate and made of an n-type diamond semiconductor that includes phosphorus as a donor, and an electron emission layer stacked to the low resistance layer and made of an n-type diamond semiconductor that includes nitrogen as a donor. The collector includes a collector substrate having an electric conductivity and is disposed opposite to the emitter via a clearance. The electron emission layer has a thickness equal to or less than 40 nm.
Abstract:
A thermionic power generator includes an emitter generating thermions and a collector collecting the thermions. The emitter includes an emitter substrate having an electric conductivity, a low resistance layer stacked to the emitter substrate and made of an n-type diamond semiconductor that includes phosphorus as a donor, and an electron emission layer stacked to the low resistance layer and made of an n-type diamond semiconductor that includes nitrogen as a donor. The collector includes a collector substrate having an electric conductivity and is disposed opposite to the emitter via a clearance. The electron emission layer has a thickness equal to or less than 40 nm.
Abstract:
A heat transfer device that includes a thermionic power generator, a wiring, a load circuit, and a switch circuit. The thermionic power generator includes an emitter electrode and a collector electrode facing each other with an inter-electrode gap distance, and converts heat energy into electric energy by capturing, with the collector electrode, a thermoelectron that is emitted from the emitter electrode. The wiring electrically connects the emitter electrode and the collector electrode. The load circuit is connected to an electric current path of by wiring between the emitter electrode and the collector electrode. The switch circuit switches between an ON state and an OFF state.
Abstract:
In a method of manufacturing an electrode of a thermionic converter, a carbide layer is formed on a base material by a vapor synthesis, an N-type diamond layer doped with a donor impurity is formed on the carbide layer by a vapor synthesis, and a surface of the N-type diamond layer is terminated with hydrogen. The base material is made of a metal, and the carbide layer is made of a metal carbide.