Abstract:
A control device has two modes as control modes of an electric power supply to an electromagnetic solenoid, which are used when a first determining unit determines that a difference between a sensed value of a phase and a target value of the phase exceeds a permissible range. One of the modes is a special mode that is used when a second determining unit determines that the sensed value of the phase reaches a threshold value. Another one of the modes is a normal mode that is used when the second determining unit determines that the sensed value of the phase does not reach the threshold value. In the special mode, the control device controls supply of the electric power to the electromagnetic solenoid in such a manner that an opening degree of an advancing port is larger than the opening degree of the advancing port in the normal mode.
Abstract:
When a lock demand of a camshaft phase occurs, a control mode of a hydraulic control valve s switched to a locking mode after an actual camshaft phase is controlled to a lock phase, and a lock pin (an inner pin and an outer pin) is moved to a lock position. Thus, the camshaft phase is locked at the lock phase, and a timing advance chamber and a timing retard chamber are made a state of communicating with each other through a back space. In this state, a locking time filling control is executed. In the locking time filling control, the control mode of a hydraulic control valve is switched to a filling mode, the hydraulic oil is supplied to a timing advance chamber, both of the timing advance chamber and the timing retard chamber are filled with the hydraulic oil, the back space is filled with the hydraulic oil, and thereafter the control mode of the hydraulic control valve is returned to the locking mode.
Abstract:
A valve timing control apparatus has a regulation member to fix a phase. The regulation member has a main regulation member and a sub regulation member. The main regulation member is inserted into a recess part to regulate the phase. The sub regulation member has an engagement part engageable with the main regulation member in an escape direction Y and disengageable from the main regulation member in an insertion direction X. Further, the sub regulation member has a pressure reception part that receives pressure in the escape direction Y from hydraulic fluid in an operation chamber. The main regulation member is urged in the insertion direction X by a main resilient member. Further, the sub regulation member is urged in the insertion direction X by a sub resilient member. The main regulation member moves in the escape direction Y only by hydraulic fluid, and moves in the insertion direction X only by the resilient member.