摘要:
The present invention concerns an electrical installation or device equipped with a power supply unit comprising a voltage converter having primary and secondary parts respectively defining a primary side and a secondary side of this electrical installation or device. This power supply unit comprises a power management unit arranged on said primary side, the primary part of the converter being associated with a control circuit also arranged on said primary side and controlling the electrical energy flowing in the primary power path of said primary part. The control circuit receives from the power management unit at least a first control signal for switching OFF the electrical energy in said primary power path, said power supply unit entering a very low power mode (“Power-down” mode) when said first control signal is set to OFF so that the converter is not supplied anymore. The power management unit is arranged such that, in said very low power mode, it can receive or generate at least a wake-up signal and set to ON said first control signal in response to said wake-up signal for supplying again said primary and secondary parts of the converter.
摘要:
The present invention concerns an electrical installation or device equipped with a power supply unit comprising a voltage converter having primary and secondary parts respectively defining a primary side and a secondary side of this electrical installation or device. This power supply unit comprises a power management unit arranged on the primary side, the primary part of the converter being associated with a control circuit also arranged on the primary side and controlling the electrical energy flowing in the primary power path of the primary part. The control circuit receives from the power management unit at least a first control signal for switching OFF the electrical energy in the primary power path, the power supply unit entering a very low power mode (“Power-down” mode) when the first control signal is set to OFF so that the converter is not supplied anymore. The power management unit is arranged such that, in the very low power mode, it can receive or generate at least a wake-up signal and set to ON the first control signal in response to the wake-up signal for supplying again the primary and secondary parts of the converter.
摘要:
The present invention concerns an electrical installation or device equipped with a power supply unit comprising a voltage converter having primary and secondary parts respectively defining a primary side and a secondary side of this electrical installation or device. This power supply unit comprises a power management unit arranged on the primary side, the primary part of the converter being associated with a control circuit also arranged on the primary side and controlling the electrical energy flowing in the primary power path of the primary part. The control circuit receives from the power management unit at least a first control signal for switching OFF the electrical energy in the primary power path, the power supply unit entering a very low power mode (“Power-down” mode) when the first control signal is set to OFF so that the converter is not supplied anymore. The power management unit is arranged such that, in the very low power mode, it can receive or generate at least a wake-up signal and set to ON the first control signal in response to the wake-up signal for supplying again the primary and secondary parts of the converter.
摘要:
The present invention concerns an electrical installation or device equipped with a power supply unit comprising a voltage converter having primary and secondary parts respectively defining a primary side and a secondary side of this electrical installation or device. This power supply unit comprises a power management unit arranged on said primary side, the primary part of the converter being associated with a control circuit also arranged on said primary side and controlling the electrical energy flowing in the primary power path of said primary part. The control circuit receives from the power management unit at least a first control signal for switching OFF the electrical energy in said primary power path, said power supply unit entering a very low power mode (“Power-down” mode) when said first control signal is set to OFF so that the converter is not supplied anymore. The power management unit is arranged such that, in said very low power mode, it can receive or generate at least a wake-up signal and set to ON said first control signal in response to said wake-up signal for supplying again said primary and secondary parts of the converter.
摘要:
A method and system for compensating for code invariancies in a digital communication receiver is performed on demodulated signal data. A pre-Viterbi invariancy compensation is performed on the demodulated signal data to reverse a selected one of a number of possible transformations to create compensated signal data. The compensated signal data is then depunctured. The depunctured data is then decoded. An encoder encodes the decoded data. The encoded data and the depunctured data are then compared to determine equivalence. The pre-Viterbi invariancy compensation is performed to reverse a different one of the number of possible transformations to create the compensated signal data when the encoded data and the depunctured data are determined not to be equivalent. A post-Viterbi invariancy compensation is then performed on the decoded data to produce a set of compensated outputs. Thus, the post-Viterbi invariancy compensation reverses each one of the number of possible transformations on the decoded data. An output is then selected from between the set of compensated outputs and the decoded data in response to detection of a sync byte.
摘要:
The present invention concerns a DBS receiver which serves to combine the functions of variable rate demodulation, convolutional decoding, de-interleaving and block decoding. The demodulation stage includes a novel circuit for clock synchronization. By combining the functions of these components this device provides a higher level of utility as measured in terms of reliability, simplicity, flexibility, cost effectiveness, and integration of board layout while maintaining optimum-quality signal processing.