摘要:
A system and a method are provided for non-causal channel equalization using error statistics. The method comprises: receiving a non-return to zero (NRZ) data stream input encoded with forward error correction (FEC); establishing a plurality of thresholds to generate a first bit estimate; comparing the first bit estimate in the data stream to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; in response to the comparisons, determining the value of the first bit; FEC decoding the determined first bit value; and, using FEC error statistics to adjust the thresholds by evaluating the number of errors associated with a plurality of three-bit sequence combinations.
摘要:
A modified gain system and method are provided for non-causal channel equalization using feed-forward and feedback compensation. The method comprises: receiving a serial data stream first bit (present) input; comparing a second bit (past) value, received prior to the first bit input, to a third bit (future) value received subsequent to the first bit input; modifying the amplitude of the first bit input to compensate for the effect of the second and third bit values being equal; and, determining the value of the first bit input by comparing the amplitude modified first bit input to a Vopt threshold. When only one of the second and third bit values is a “1” value, a unity amplitude modifier is supplied. When the second and third bit values are a “1”, a low amplitude modifier is supplied. When the second and third bit values are a “0”, a high amplitude modifier is supplied.
摘要:
A system and method are provided for feed-forward/feedback non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; using three thresholds, estimating a first bit in the data stream; using two thresholds, determining a third bit value received subsequent to the first bit; comparing the first bit estimate to the third bit value; comparing the first bit estimate to a second bit value received prior to the first bit; and, in response to the comparisons, determining the value of the first bit. In some aspects of the method, the third bit value is determined in response to a prior third bit value determination. Determining a third bit value includes: distinguishing NRZ data stream inputs between fourth and fifth thresholds as a “0” if the prior third bit value was a “1”, and as a “1” if the prior third bit value was a “0”.
摘要:
A system and method are provided for five-level non-casual channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing a five-level threshold; comparing the first bit estimate to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; and, in response to the comparisons, determining the value of the first bit. Establishing a five-level threshold includes: establishing thresholds to distinguish a first bit value when the second and third bit values are a “1” value, when the second bit value is a “1” and the third bit value is a “0”, when the second bit value is a “0” and the third bit value is a “1”, when the second and third bit values are a “0” value, and an approximate midway threshold.
摘要:
A system and method are provided for five-level non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing a five-level threshold; comparing the first bit estimate to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; and, in response to the comparisons, determining the value of the first bit. Establishing a five-level threshold includes: establishing thresholds to distinguish a first bit value when the second and third bit values are a “1” value, when the second bit value is a “1” and the third bit value is a “0”, when the second bit value is a “0” and the third bit value is a “1”, when the second and third bit values are a “0” value, and an approximate midway threshold.
摘要:
A system and method are provided for non-causal channel equalization in a communications system. The method comprises: establishing a first threshold (V1) to distinguish a high probability “1” first bit estimate; establishing a second threshold (V0) to distinguish a high probability “0” first bit estimate; establishing a third threshold (Vopt) to distinguish first bit estimates between the first and second thresholds; receiving a non-return to zero (NRZ) data stream; comparing the first bit estimate in the data stream to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; in response to the comparisons, determining the value of the first bit.
摘要:
A system and method are provided for non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing thresholds to distinguish a first bit estimate; comparing the first bit estimate in the NRZ data stream to a second bit value received prior to the first bit, and a third bit received subsequent to the first bit; in response to the comparisons, determining the value of the first bit; tracking the NRZ data stream inputs in response to sequential bit value combinations; maintaining long-term averages of the tracked NRZ data stream inputs; adjusting the thresholds in response to the long-term averages; and, offsetting the threshold adjustments to account for the asymmetric noise distribution. Two methods are used to offset the threshold adjustments to account for the asymmetric noise distribution: forward error correction (FEC) decoding and tracking the ratio of bit values.
摘要:
A system and method are provided for non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing thresholds to distinguish a first bit estimate; comparing the first bit estimate in the NRZ data stream to a second bit value received prior to the first bit, and a third bit received subsequent to the first bit; in response to the comparisons, determining the value of the first bit; tracking the NRZ data stream inputs in response to sequential bit value combinations; maintaining long-term averages of the tracked NRZ data stream inputs; adjusting the thresholds in response to the long-term averages; and, offsetting the threshold adjustments to account for the asymmetric noise distribution. Two methods are used to offset the threshold adjustments to account for the asymmetric noise distribution: forward error correction (FEC) decoding and tracking the ratio of bit values.
摘要:
A system and method are provided for feed-forward equalization (FFE) in a transmission system. The method accepts a serial stream of input digital data signals. For each input data signal, a temporal sequence of signals is generated. Each of the signals in the temporal sequence is selectively shaped. Shaping map include varying the degree of amplification, modifying the slew rate, or varying the time delay. The contributions of the selectively shaped signals in the temporal sequence are then selectively weighted, and a summed output signal is transmitted.
摘要:
A system and method are provided for feed-forward equalization (FFE) in a transmission system. The method accepts a serial stream of input digital data signals. For each input data signal, a temporal sequence of signals is generated. Each of the signals in the temporal sequence is selectively shaped. Shaping map include varying the degree of amplification, modifying the slew rate, or varying the time delay. The contributions of the selectively shaped signals in the temporal sequence are then selectively weighted, and a summed output signal is transmitted.