Abstract:
A system and method are provided for five-level non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing a five-level threshold; comparing the first bit estimate to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; and, in response to the comparisons, determining the value of the first bit. Establishing a five-level threshold includes: establishing thresholds to distinguish a first bit value when the second and third bit values are a “1” value, when the second bit value is a “1” and the third bit value is a “0”, when the second bit value is a “0” and the third bit value is a “1”, when the second and third bit values are a “0” value, and an approximate midway threshold.
Abstract:
A system and method are provided for non-causal channel equalization in a communications system. The method comprises: establishing a first threshold (V1) to distinguish a high probability “1” first bit estimate; establishing a second threshold (V0) to distinguish a high probability “0” first bit estimate; establishing a third threshold (Vopt) to distinguish first bit estimates between the first and second thresholds; receiving a non-return to zero (NRZ) data stream; comparing the first bit estimate in the data stream to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; in response to the comparisons, determining the value of the first bit.
Abstract:
A system and method are provided for coding a frame in a packet communications system using a G.709 Digital Wrapper Frame format. The method comprises: accepting digital information; outer encoding the digital information with a Reed Solomon (RS) encoding scheme; interleaving the outer encoded information; inner encoding the interleaved information using a BCH encoding scheme; and, forming a G.709 Digital Wrapper frame including payload and parity bytes. More specifically, a standard DW superframe is formed with 122,368 bits of payload and 8192 bits of parity. The outer encoding process uses an RS(1023,1007) parent code. In one aspect, 15 groups of RS(781,765) and 1 group of RS(778,762) codewords are formed per superframe. The inner encoding process uses a BCH(2047,1959) parent code. In one aspect, 64 groups of BCH(2040,1952) codewords are formed per superframe.
Abstract:
A system and method are provided for using an analysis of forward error corrections (FEC) in a digital communications signal as feedback information to improve the performance of an analog receiver system. The FEC decoder supplies the number of “1” bit and “0” bit corrections made to a control unit. In response to the FEC corrections, the control unit changes receiver control parameters. The control signal modifies processing in the receiver front end to achieve the fewest number of FEC corrections.
Abstract:
A system and method are provided for five-level non-casual channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing a five-level threshold; comparing the first bit estimate to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; and, in response to the comparisons, determining the value of the first bit. Establishing a five-level threshold includes: establishing thresholds to distinguish a first bit value when the second and third bit values are a “1” value, when the second bit value is a “1” and the third bit value is a “0”, when the second bit value is a “0” and the third bit value is a “1”, when the second and third bit values are a “0” value, and an approximate midway threshold.
Abstract:
A system and a method are provided for non-causal channel equalization using error statistics. The method comprises: receiving a non-return to zero (NRZ) data stream input encoded with forward error correction (FEC); establishing a plurality of thresholds to generate a first bit estimate; comparing the first bit estimate in the data stream to a second bit value received prior to the first bit; comparing the first bit estimate to a third bit value received subsequent to the first bit; in response to the comparisons, determining the value of the first bit; FEC decoding the determined first bit value; and, using FEC error statistics to adjust the thresholds by evaluating the number of errors associated with a plurality of three-bit sequence combinations.
Abstract:
A modified gain system and method are provided for non-causal channel equalization using feed-forward and feedback compensation. The method comprises: receiving a serial data stream first bit (present) input; comparing a second bit (past) value, received prior to the first bit input, to a third bit (future) value received subsequent to the first bit input; modifying the amplitude of the first bit input to compensate for the effect of the second and third bit values being equal; and, determining the value of the first bit input by comparing the amplitude modified first bit input to a Vopt threshold. When only one of the second and third bit values is a “1” value, a unity amplitude modifier is supplied. When the second and third bit values are a “1”, a low amplitude modifier is supplied. When the second and third bit values are a “0”, a high amplitude modifier is supplied.
Abstract:
A system and method are provided for non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing thresholds to distinguish a first bit estimate; comparing the first bit estimate in the NRZ data stream to a second bit value received prior to the first bit, and a third bit received subsequent to the first bit; in response to the comparisons, determining the value of the first bit; tracking the NRZ data stream inputs in response to sequential bit value combinations; maintaining long-term averages of the tracked NRZ data stream inputs; adjusting the thresholds in response to the long-term averages; and, offsetting the threshold adjustments to account for the asymmetric noise distribution. Two methods are used to offset the threshold adjustments to account for the asymmetric noise distribution: forward error correction (FEC) decoding and tracking the ratio of bit values.
Abstract:
A system and method are provided for non-causal channel equalization in a communications system. The method comprises: receiving a non-return to zero (NRZ) data stream input; establishing thresholds to distinguish a first bit estimate; comparing the first bit estimate in the NRZ data stream to a second bit value received prior to the first bit, and a third bit received subsequent to the first bit; in response to the comparisons, determining the value of the first bit; tracking the NRZ data stream inputs in response to sequential bit value combinations; maintaining long-term averages of the tracked NRZ data stream inputs; adjusting the thresholds in response to the long-term averages; and, offsetting the threshold adjustments to account for the asymmetric noise distribution. Two methods are used to offset the threshold adjustments to account for the asymmetric noise distribution: forward error correction (FEC) decoding and tracking the ratio of bit values.
Abstract:
A method for analyzing Gigabit Ethernet (GBE) and fiber channel protocol communications is provided which provides a more detailed understanding of the errors, than that provided under the IEEE 802.3z standard. The method creates an additional parity error signal which is not specified under the IEEE 802.3z standard. The parity error signals and IEEE 802.3z invalid code word signals are used to provide an analysis of whether the underlying communication errors are a result of 8B/10B coding word errors or running disparity errors. A system and apparatus to monitor performance in accordance with the above-mentioned method is also provided.