摘要:
Described herein are methods, apparatus, and computer readable media to control a user interface on a remote control. A first device command may be received from a remote control. This device command may cause the device to leave a first functional mode and enter a second functional mode. A first remote control command may then be sent to the remote control, with the first remote control command identifying a first remote control user interface to be displayed. The user interface may be operative to control features of the device unique to the second functional mode.
摘要:
Systems and methods of 3D image processing are disclosed. In a particular embodiment, a three-dimensional (3D) media player is configured to receive input data including at least a first image corresponding to a scene and a second image corresponding to the scene and to provide output data to a 3D display device. The 3D media player is responsive to user input including at least one of a zoom command and a pan command. The 3D media player includes a convergence control module configured to determine a convergence point of a 3D rendering of the scene responsive to the user input.
摘要:
Systems and methods of 3D image processing are disclosed. In a particular embodiment, a three-dimensional (3D) media player is configured to receive input data including at least a first image corresponding to a scene and a second image corresponding to the scene and to provide output data to a 3D display device. The 3D media player is responsive to user input including at least one of a zoom command and a pan command. The 3D media player includes a convergence control module configured to determine a convergence point of a 3D rendering of the scene responsive to the user input.
摘要:
Present embodiments contemplate systems, apparatus, and methods to determine an appropriate focal depth for a sensor based upon a pair of stereoscopic images. Particularly, certain of the embodiments contemplate determining keypoints for each image, identifying correlations between the keypoints, and deriving object distances from the correlations. These distances may then be used to select a proper focal depth for one or more sensors.
摘要:
Present embodiments contemplate systems, apparatus, and methods to determine an appropriate focal depth for a sensor based upon a pair of stereoscopic images. Particularly, certain of the embodiments contemplate determining keypoints for each image, identifying correlations between the keypoints, and deriving object distances from the correlations. These distances may then be used to select a proper focal depth for one or more sensors.
摘要:
A technique for processing at least one bad pixel occurring in an image sensing system is provided. Dynamic bad pixel detection is performed on a plurality of streaming pixels taking from at least one controlled image and value and coordinate information for each bad pixel is subsequently stored as stored bad pixel information. Thereafter, static bad pixel correction may be performed based on the stored bad pixel information. The stored bad pixel information may be verified based on histogram analysis performed on the plurality of streaming pixels. The technique for processing bad pixels in accordance with the present invention may be embodied in suitable circuitry or, more broadly, within devices incorporating image sensing systems.
摘要:
Described herein are methods, systems and apparatus to improve imaging sensor production yields. In one method, a stereoscopic image sensor pair is provided from a manufacturing line. One or more images of a correction pattern are captured by the image sensor pair. Correction angles of the sensor pair are determined based on the images of the correction pattern. The correction angles of the sensor pair are represented graphically in a three dimensional space. Analysis of the graphical representation of the correction angles through statistical processing results in a set of production correction parameters that may be input into a manufacturing line to improve sensor pair yields.
摘要:
A method of combining data from multiple sensors is disclosed. The method includes receiving lines of image data at an image processor having an input for a single camera. Each line of the image data includes first line data from a first image captured by a first camera and second line data from a second image captured by a second camera. The method also includes generating an output frame having a first section corresponding to line data of the first image and having a second section corresponding to line data of the second image. The first section and the second section are configured to be used to generate a three-dimensional (3D) image format or a 3D video format.
摘要:
A method of combining data from multiple sensors is disclosed. The method includes receiving lines of image data at an image processor having an input for a single camera. Each line of the image data includes first line data from a first image captured by a first camera and second line data from a second image captured by a second camera. The method also includes generating an output frame having a first section corresponding to line data of the first image and having a second section corresponding to line data of the second image. The first section and the second section are configured to be used to generate a three-dimensional (3D) image format or a 3D video format.
摘要:
A method of combining data from multiple sensors is disclosed. The method includes providing a common control signal to multiple image sensors. Each of the multiple image sensors is responsive to the common control signal to generate image data. The method also includes receiving synchronized data output from each of the multiple image sensors.