Abstract:
Disclosed herein is an antenna feed design for transmitting or receiving a circularly polarized microwave signal, and a communication device using that antenna feed design. Resonating disks are bowl-shaped to balance E-plane and H-plane magnetic field patterns, decreasing cross-polarization, and providing mechanical rigidity. A non-planar circuit replaces planar microstrip transmission lines for transmitting the signal, with 90° phase shifts, from an input point to excitation points. This non-planar circuit overcomes some of the layout problems encountered in planar circuits. It maintains impedance matching from the input point to the excitation points by progressively tapering down the characteristic transmission line impedance of each successive section. The non-planar circuit has sufficient mechanical strength and rigidity to allow it to be supported at only two anchor points. Similarly, the non-planar disks are also of sufficient strength to require only a single anchor point each. Thus, the antenna parts do not require any additional dielectric substrate support, and all parts are DC grounded. The use of fingers surrounding the ground plane and extending towards the resonating disks results in improved off-boresight polarization. All components of the antenna feed are built and combined without the use of solder or dielectric substrate support, creating a stable, corrosion-resistant, low-cross polarization antenna.
Abstract:
Disclosed herein is an antenna feed design for transmitting or receiving a circularly polarized microwave signal, and a communication device using that antenna feed design. Resonating disks are bowl-shaped to balance E-plane and H-plane magnetic field patterns, decreasing cross-polarization, and providing mechanical rigidity. A non-planar circuit replaces planar microstrip transmission lines for transmitting the signal, with 90° phase shifts, from an input point to excitation points. This non-planar circuit overcomes some of the layout problems encountered in planar circuits. It maintains impedance matching from the input point to the excitation points by progressively tapering down the characteristic transmission line impedance of each successive section. The non-planar circuit has sufficient mechanical strength and rigidity to allow it to be supported at only two anchor points. Similarly, the non-planar disks are also of sufficient strength to require only a single anchor point each. Thus, the antenna parts do not require any additional dielectric substrate support, and all parts are DC grounded. The use of fingers surrounding the ground plane and extending towards the resonating disks results in improved off-boresight polarization. All components of the antenna feed are built and combined without the use of solder or dielectric substrate support, creating a stable, corrosion-resistant, low-cross polarization antenna.
Abstract:
A radiating element for dual polarised operation in a linear antenna array is disclosed. The radiating element is a dual polarised radiating patch element consisting of a ground plane, a lower patch, an upper patch and parasitic elements. The lower patch and upper patch are stacked above the ground plane in a spaced apart relationship. The parasitic elements lie in the same plane as the lateral edges of the lower patch. Supports are used to hold the patches and the parasitic elements in a spaced apart relationship. The parasitic elements are fed from a central area of the lower patch by microstrips. The ground plane has apertures which are of a dumbbell shape to achieve the same effective length as long apertures. Orthogonally disposed strip type driven elements span across the central portions of the apertures and the length of these strips is selected to achieve the desired matchings. The feed to the driven elements will typically form part of a feed network etched onto a PCB mounted adjacent to the ground plane with conducting elements facing away from the ground plane. One requirement of this device is that the return loss at each port must satisfy a certain minimum level over a given frequency band. This is satisfied by employing an aperture coupled stacked patched configuration. Another requirement is that isolation between the two ports has to satisfy a certain minimum allowed level which is achieved by obtaining almost perfuect symmetry in one plane. In order to narrow the beam width for the vertically polarised radiation parasitic elements are provided which are feed from a region located near the middle of the lower patch via microstrips.
Abstract:
An embodiment of the present invention provides an apparatus, comprising an input port and a dynamic impedance matching network capable of determining a mismatch at the input port and dynamically changing the RF match by using at least one matching element that includes at least one voltage tunable dielectric capacitor. The matching network may be a “Pi”, a “T”, or “ladder” type network and the apparatus may further comprise at least one directional coupler capable of signal collection by sampling a portion of an incident signal, a reflected signal or both. In an embodiment of the present invention, the apparatus may also include a control and power control & logic unit (PC LU) to convert input analog signals into digital signals and sensing VSWR phase and magnitude and processing the digital signals using an algorithm to give it a voltage value and wherein the voltage values may be compared to values coming from the coupler and once compared and matched, the values may be passed to a Hi Voltage Application Specific Integrated Circuit (HV ASIC) to transfer and distribute compensatory voltages to the matching network elements. Additional embodiments are disclosed.
Abstract:
An embodiment of the present invention provides an apparatus, comprising an input port and a dynamic impedance matching network capable of determining a mismatch at the input port and dynamically changing the RF match by using at least one matching element that includes at least one voltage tunable dielectric capacitor. The matching network may be a “Pi”, a “T”, or “ladder” type network and the apparatus may further comprise at least one directional coupler capable of signal collection by sampling a portion of an incident signal, a reflected signal or both. In an embodiment of the present invention, the apparatus may also include a control and power control & logic unit (PC LU) to convert input analog signals into digital signals and sensing VSWR phase and magnitude and processing the digital signals using an algorithm to give it a voltage value and wherein the voltage values may be compared to values coming from the coupler and once compared and matched, the values may be passed to a Hi Voltage Application Specific Integrated Circuit (HV ASIC) to transfer and distribute compensatory voltages to the matching network elements. Additional embodiments are disclosed.