摘要:
Robotic payloads are abstracted to provide a plug-and-play system in which mission specific capabilities are easily configured on a wide variety of robotic platforms. A robotic payload architecture is presented in which robotic functionalities are bifurcated into intrinsic capabilities, managed by a core module, and mission specific capabilities, addressed by mission payload module(s). By doing so the core modules manages a particular robotic platform's intrinsic functionalities while mission specific tasks are left to mission payloads. A mission specific robotic configuration can be compiled by adding multiple mission payload modules to the same platform managed by the same core module. In each case the mission payload module communicates with the core module for information about the platform on which it is being associated.
摘要:
Robotic payloads are abstracted to provide a plug-and-play system in which mission specific capabilities are easily configured on a wide variety of robotic platforms. A robotic payload architecture is presented in which robotic functionalities are bifurcated into intrinsic capabilities, managed by a core module, and mission specific capabilities, addressed by mission payload module(s). By doing so the core modules manages a particular robotic platform's intrinsic functionalities while mission specific tasks are left to mission payloads. A mission specific robotic configuration can be compiled by adding multiple mission payload modules to the same platform managed by the same core module. In each case the mission payload module communicates with the core module for information about the platform on which it is being associated.
摘要:
An architecture comprising a hardware layer, a data collection layer and an execution layer lays the foundation for a behavioral layer that can asynchronously access abstracted data. A plurality of data sensors asynchronously collect data which is thereafter abstracted so as to be usable by one or more behavioral modules simultaneously. Each of the behaviors can be asynchronously executed as well as dynamically modified based on the collected abstracted data. Moreover, the behavior modules themselves are structured in a hierarchical manner among one or more layers such that outputs of behavior module associated with a lower layer may be the input to a behavior module of a higher letter. Conflicts between outputs of behavior modules are arbitrated and analyzed so as to conform with an overall mission objective.
摘要:
Using distributed positioning, collaborative behavioral determination, and probabilistic conflict resolution objects can independently identify and resolve potential conflicts before the occur. In one embodiment of the invention, interactive tags and other sensor resources associated with each of a plurality of objects provide among the objects relative positional data and state information. Using this information each object develops a spatial awareness of its environment, including the positional and action of nearby objects so as to, when necessary, modify its behavior to more effectively achieve an objective and resolve potential conflicts.