Abstract:
An ultrasonic imaging catheter is disclosed that includes a thermistor mounted on the catheter in the vicinity of the ultrasound transducer for monitoring the temperature in the vicinity thereof. The electrical signal from the thermistor can be used to control the output of the ultrasound transducer to thereby control the temperature of the same. In a further aspect of the invention, an isolation box is provided that is external to the ultrasound machine itself and is connected to the same by a cable. Ideally, the isolation box which houses a sufficient number of isolation transformers, is small, so it can be placed easily on or near the patient's bed.
Abstract:
An interface for limiting an amount of current passing to an intra-body medical device is provided, the interface including a first catheter port configured for coupling with a first catheter, a first processor port configured for coupling with a first cable linkable to a first processor, and a current isolator coupled to the first catheter port and to the first processor port, the current isolator limiting an amount of current passing to the first catheter port.
Abstract:
An infusion monitor for feeding liquids to patients which is light weight so that it may be easily hung on a liquid dripper and which is provided with means for pre-setting the volume infused and the rate of infusion. Means are also provided for automatically varying the rate of infusion, for automatically cutting-off the infusion and for sounding an alarm to alert an attendant if any variation from pre-set limits occur.
Abstract:
Steerable catheters are provided including an elongated flexible member having a proximal end, a distal end and a lumen extending therebetween (i.e., between the proximal end and the distal end). A plurality of electrical cables is bundled together and positioned within the lumen of the flexible member. The cross-section of the bundle of electrical cables is substantially ovular or rectangular so as to be bendable in two approximately opposite directions. Methods of steering such a catheter within a body include advancing the catheter within a body while a first force is applied to the bundle of electrical cables to cause the distal end of the elongate flexible member to form a bend. The catheter is farther advanced within the body while a second, opposite force is applied to the bundle of electrical cables to remove the bend in the distal end.
Abstract:
Steerable catheters are provided including an elongated flexible member having a proximal end, a distal end and a lumen extending therebetween (i.e., between the proximal end and the distal end). A plurality of electrical cables is bundled together and positioned within the lumen of the flexible member. The cross-section of the bundle of electrical cables is substantially ovular or rectangular so as to be bendable in two approximately opposite directions. Methods of steering such a catheter within a body include advancing the catheter within a body while a first force is applied to the bundle of electrical cables to cause the distal end of the elongate flexible member to form a bend. The catheter is farther advanced within the body while a second, opposite force is applied to the bundle of electrical cables to remove the bend in the distal end.
Abstract:
A contact lens cleaning and disinfecting system is formed as a compact unit with an upper housing portion containing a UV lamp and a lower base portion containing a cleaning/disinfecting chamber which is filled with saline solution, a lens holder, a turbulence mechanism for inducing turbulence in the fluid, and an electronic control unit for operating the UV lamp and the turbulence mechanism in a single cleaning/disinfecting cycle of comparatively short duration. The lens holder has a pair of lower lens holder portions for the lenses and an upper bracket for shading the lenses from direct UV radiation. The turbulence mechanism is a magnetic pedal, tethered on the end of a flexible spring, which is driven by a magnetic flux generator to create a whirlpool in the fluid which swirls in and around the lens holder portion. Particles, films, and other deposits dislodged from the lenses are carried by the whirlpool above the upper bracket of the lens holder where they are disinfected by the UV radiation. The pedal is driven in oscillation in a sub-sonic range of about 50-120 cyc/sec. An electrical contact interlock between the upper housing and the lower base prevents accidental operation and irradiation by the UV lamp. The whirlpool turbulence cleans deposits from the lenses, thereby avoiding the need for manual scrubbing and detergent chemicals. The UV radiation disinfects the dislodged deposits and fluid quickly, without heating, and without the need for preservatives and disinfectant chemicals.
Abstract:
An infusion monitor for feeding liquids to patients which is light weight so that it may be easily hung on a liquid dripper and which is provided with means for pre-setting the volume infused and the rate of infusion. Means are also provided for automatically varying the rate of infusion, for automatically cutting-off the infusion and for sounding an alarm to alert an attendant if any variation from pre-set limits occur.
Abstract:
A contact lens cleaning and storage case includes a base having two container sections for holding a liquid; two lens holders, each positioned above a lower wall of a respective container section and each at least partially sitting within the respective container section, each lens holder having a bottom wall; a drain connected to the bottom of each lens holder for draining liquid from each lens holder to the container sections, the drain including reduced diameter openings for restricting a liquid flow rate so as to provide that liquid drainage from the lens holders to the container sections occurs in a time of ten to fifteen seconds; additional openings which provide fluid communication between atmosphere and the container sections so as to provide for displacement of air in the container sections; and two caps, each for removably covering a respective lens holder.
Abstract:
An apparatus for locating and mapping a catheter in a heart invasive operation, includes a permanent magnet with a north pole face, a permanent magnet with a south pole face, a frame for positioning the magnets on opposite sides of a person's body; first and second motors for revolving the permanent magnets in synchronism and in alignment with each other to create a directional magnetic field that revolves 360 degrees through the person's heart; a catheter for insertion into the heart, the catheter including a first sensor group of three mutually orthogonal sensors at the tip thereof and a second sensor group of three mutually orthogonal sensors in axially spaced relation to the first sensor group, each for detecting the relative strength of the revolving magnetic field; a magnetic field position detector which detects the angular position and speed of movement of the directional magnetic field; a plurality of electrodes spaced along an outer wall thereof for detecting electric signals which run along a wall of the heart; an ablation member at a tip of the catheter for burning out a wall of the heart; and a central processing unit for determining a location of the catheter position in relation to the heart in response to the detected strength of the revolving magnetic field by the first and second sensor groups and the angular position and speed of movement of the directional magnetic field.