摘要:
Encryption interface technologies are described. A processor can include a system agent, an encryption interface, and a memory controller. The system agent can communicate data with a hardware functional block. The encryption interface can be coupled between the system agent and a memory controller. The encryption interface can receive a plaintext request from the system agent, encrypt the plaintext request to obtain an encrypted request, and communicate the encrypted request to the memory controller. The memory controller can communicate the encrypted request to a main memory of the computing device.
摘要:
In an embodiment, a processor includes: at least one core to execute instructions; a cache memory coupled to the at least one core to store data; and a tracker cache memory coupled to the at least one core. The tracker cache memory includes entries to store an integrity value associated with a data block to be written to a memory coupled to the processor. Other embodiments are described and claimed.
摘要:
Technologies for memory encryption include a computing device to generate a keyed hash of a data line based on a statistical counter value and a memory address to which to write the data line and to store the keyed hash to a cache line. The statistical counter value has a reference probability of incrementing at each write operation. The cache line includes a plurality of keyed hashes and each of the keyed hashes corresponds with a different data line. The computing device further encrypts the data line based on the keyed hash, the memory address, and the statistical counter value.
摘要:
A method and system to provide a low-overhead cryptographic scheme that affords memory confidentiality, integrity and replay-protection by removing the critical read-after-write dependency between the various levels of the cryptographic tree. In one embodiment of the invention, the cryptographic processing of a child node can be pipelined with that of the parent nodes. This parallelization provided by the invention results in an efficient utilization of the cryptographic pipeline, enabling significantly lower performance overheads.
摘要:
A method and system to provide an effective, scalable and yet low-cost solution for Confidentiality, Integrity and Replay protection for sensitive information stored in a memory and prevent an attacker from observing and/or modifying the state of the system. In one embodiment of the invention, the system has strong hardware protection for its memory contents via XTS-tweak mode of encryption where the tweak is derived based on “Global and Local Counters”. This scheme offers to enable die-area efficient Replay protection for any sized memory by allowing multiple counter levels and facilitates using small counter-sizes to derive the “tweak” used in the XTS encryption without sacrificing cryptographic strength.
摘要:
A processor includes a memory encryption engine that provides replay and confidentiality protections to a memory region. The memory encryption engine performs low-overhead parallelized tree walks along a counter tree structure. The memory encryption engine upon receiving an incoming read request for the protected memory region, performs a dependency check operation to identify dependency between the incoming read request and an in-process request and to remove the dependency when the in-process request is a read request that is not currently suspended.
摘要:
A method and system to provide a low-overhead cryptographic scheme that affords memory confidentiality, integrity and replay-protection by removing the critical read-after-write dependency between the various levels of the cryptographic tree. In one embodiment of the invention, the cryptographic processing of a child node can be pipelined with that of the parent nodes. This parallelization provided by the invention results in an efficient utilization of the cryptographic pipeline, enabling significantly lower performance overheads.
摘要:
A processor includes a memory encryption engine that provides replay and confidentiality protections to a memory region. The memory encryption engine performs low-overhead parallelized tree walks along a counter tree structure. The memory encryption engine upon receiving an incoming read request for the protected memory region, performs a dependency check operation to identify dependency between the incoming read request and an in-process request and to remove the dependency when the in-process request is a read request that is not currently suspended.
摘要:
A method and system to provide an effective, scalable and yet low-cost solution for Confidentiality, Integrity and Replay protection for sensitive information stored in a memory and prevent an attacker from observing and/or modifying the state of the system. In one embodiment of the invention, the system has strong hardware protection for its memory contents via XTS-tweak mode of encryption where the tweak is derived based on “Global and Local Counters”. This scheme offers to enable die-area efficient Replay protection for any sized memory by allowing multiple counter levels and facilitates using small counter-sizes to derive the “tweak” used in the XTS encryption without sacrificing cryptographic strength.
摘要:
Embodiments of the invention include a machine-readable medium having stored thereon instructions, which if performed by a machine causes the machine to perform a method that includes assigning an urgency of requests based on a priority level for incoming requests and associated entries in at least one priority queue, assigning an urgency delta for anti-starvation that indicates urgency promotion to prevent starvation for the incoming requests in the at least one priority queue, determining conflict information including whether an incoming request is dependent on any request already present in the at least one queue, determining all contending requests within the at least one priority queue during a cycle, and sending a selected contending request to a memory controller for accessing memory.