摘要:
The invention utilizes a separate queue per output port as implemented in the traditional simple queuing schemes of the prior art. Further, it also uses the information found in the packet header to determine the output port and the next output port. Based on this information, it utilizes queues dedicated to congested flows, or “Congested Flow” queues. When the switch determines that, based on the first output port and the second subsequent output port, a packet in the output queue is destined for a congested path, it sets the offending packet aside in a Congested Flow queue, thereby allowing other packets destined for the first output port to continue to be transmitted. In this way, the HOL blocking issue is addressed, without the need for a significantly increased number of output queues.
摘要:
The invention utilizes a separate queue per output port as implemented in the traditional simple queuing schemes of the prior art. Further, it also uses the information found in the packet header to determine the output port and the next output port. Based on this information, it utilizes queues dedicated to congested flows, or “Congested Flow” queues. When the switch determines that, based on the first output port and the second subsequent output port, a packet in the output queue is destined for a congested path, it sets the offending packet aside in a Congested Flow queue, thereby allowing other packets destined for the first output port to continue to be transmitted. In this way, the HOL blocking issue is addressed, without the need for a significantly increased number of output queues.
摘要:
The invention utilizes a separate queue per output port as implemented in the traditional simple queuing schemes of the prior art. Further, it also uses the information found in the packet header to determine the output port and the next output port. Based on this information, it utilizes queues dedicated to congested flows, or “Congested Flow” queues. When the switch determines that, based on the first output port and the second subsequent output port, a packet in the output queue is destined for a congested path, it sets the offending packet aside in a Congested Flow queue, thereby allowing other packets destined for the first output port to continue to be transmitted. In this way, the HOL blocking issue is addressed, without the need for a significantly increased number of output queues.
摘要:
The invention utilizes a separate queue per output port as implemented in the traditional simple queuing schemes of the prior art. Further, it also uses the information found in the packet header to determine the output port and the next output port. Based on this information, it utilizes queues dedicated to congested flows, or “Congested Flow” queues. When the switch determines that, based on the first output port and the second subsequent output port, a packet in the output queue is destined for a congested path, it sets the offending packet aside in a Congested Flow queue, thereby allowing other packets destined for the first output port to continue to be transmitted. In this way, the HOL blocking issue is addressed, without the need for a significantly increased number of output queues.
摘要:
The invention provides an improved architecture for credit based flow control. Briefly, the memory space within the receiving switch is separated into two parts, a statically allocated portion and a dynamically allocated portion. Packets are first placed in the dynamically allocated portion, and the credits are returned immediately. When the dynamically allocated portion has no additional space, the packets are then stored in the memory portion statically allocated to the specific virtual circuit. Credits are returned when the packets are removed from the statically allocated memory portion. This scenario allows the immediate return of credits when there is space available in the dynamically allocated memory portion. It also allows improved sharing of the overall memory since more of the overall memory can be made available to a particular virtual circuit.
摘要:
The invention provides an improved architecture for credit based flow control. Briefly, the memory space within the receiving switch is separated into two parts, a statically allocated portion and a dynamically allocated portion. Packets are first placed in the dynamically allocated portion, and the credits are returned immediately. When the dynamically allocated portion has no additional space, the packets are then stored in the memory portion statically allocated to the specific virtual circuit. Credits are returned when the packets are removed from the statically allocated memory portion. This scenario allows the immediate return of credits when there is space available in the dynamically allocated memory portion. It also allows improved sharing of the overall memory since more of the overall memory can be made available to a particular virtual circuit.
摘要:
The present invention relates generally to a generic fabric interconnect system and method for providing a data path between and among nodes and processing elements within an interconnection fabric. More specifically, there is provided a device accessible by a host processor for expanding access over a first bus to a second bus, the first bus and the second bus each being adapted to separately connect to respective ones of a plurality of bus-compatible devices, each device which comprise a link, a first circuit adapted to couple between the first bus and the link, and a second circuit adapted to couple between the link and the second bus, the first circuit and the second circuit each being operated as a bridge and being operable to (a) send outgoing information serially through said link in a form different from that of the first bus and the second bus (b) approve an initial exchange between the first bus and the second bus in response to pending bus transactions having a characteristic signifying a destination across a device, and (c) allow the host processor, communicating through the first bus, to individually address different selectable ones of the bus-compatible devices on the second bus: (i) using on the first bus substantially the same type of addressing as is used to access devices on the first bus, and (ii) without first employing a second, intervening one of the bus-compatible devices on the second bus.
摘要:
The present invention provides an improved apparatus and method for the receipt of high-speed sequential data streams. It utilizes the concept of banked memories to reduce the required speed and size of the input buffers used to receive the data streams. This allows the device to employ large, relatively slow memory elements, thereby permitting large amounts of sequential data to be stored by the receiving device. Using control information that was written as the data was being stored in the memory banks, a reordering element is later able to retrieve the data elements from the plurality of memory banks, in an order that is different from that in which the stream was received, and to reassemble the data stream into the original sequence.
摘要:
The present invention provides an improved apparatus and method for the receipt of high-speed sequential data streams. It utilizes the concept of banked memories to reduce the required speed and size of the input buffers used to receive the data streams. This allows the device to employ large, relatively slow memory elements, thereby permitting large amounts of sequential data to be stored by the receiving device. Using control information that was written as the data was being stored in the memory banks, a reordering element is later able to retrieve the data elements from the plurality of memory banks, in an order that is different from that in which the stream was received, and to reassemble the data stream into the original sequence.
摘要:
The invention provides an improved architecture for credit based flow control. Briefly, the memory space within the receiving switch is separated into two parts, a statically allocated portion and a dynamically allocated portion. Packets are first placed in the dynamically allocated portion, and the credits are returned immediately. When the dynamically allocated portion has no additional space, the packets are then stored in the memory portion statically allocated to the specific virtual circuit. Credits are returned when the packets are removed from the statically allocated memory portion. This scenario allows the immediate return of credits when there is space available in the dynamically allocated memory portion. It also allows improved sharing of the overall memory since more of the overall memory can be made available to a particular virtual circuit.