摘要:
A radio interface layer media independent handover (RIL MIH) client functionality enables transparent inter-system handover of a wireless transmit/receive unit (WTRU) between different radio access technologies (RATs), without user intervention. The RIL MIH client interacts with RIL drivers and proxies, informs the RIL proxies of the handover status, then the proxies interact with a new driver in use. A WTRU is modified to add MIH functionality to a telephony server to support inter-system handover.
摘要:
A radio interface layer media independent handover (RIL MIH) client functionality enables transparent inter-system handover of a wireless transmit/receive unit (WTRU) between different radio access technologies (RATs), without user intervention. The RIL MIH client interacts with RIL drivers and proxies, informs the RIL proxies of the handover status, then the proxies interact with a new driver in use. A WTRU is modified to add MIH functionality to a telephony server to support inter-system handover.
摘要:
A wireless transmit/receive unit (WTRU) may include two or more modems, each configured to link to a different network, and a media independent handover (MIH) client. An application programming interfaces (API) may provide the MIH client with mechanisms to receive information about links, control the modems for handover, discover a MIH server and IP multimedia system nodes, trigger mobile IP handover, etc. If a link has been successfully established, the MIH client may start a MIH session. When the modem indicates that a connection is going to be terminated, the MIH client may activate the second modem for handover. If the first modem indicates that a link parameter has crossed a threshold, the MIH client may send signal measurements to a MIH server. After receiving a media independent handover switch request, the MIH client may initiate handover to the second network.
摘要:
A wireless transmit/receive unit (WTRU) may include two or more modems, each configured to link to a different network, and a media independent handover (MIH) client. An application programming interfaces (API) may provide the MIH client with mechanisms to receive information about links, control the modems for handover, discover a MIH server and IP multimedia system nodes, trigger mobile IP handover, etc. If a link has been successfully established, the MIH client may start a MIH session. When the modem indicates that a connection is going to be terminated, the MIH client may activate the second modem for handover. If the first modem indicates that a link parameter has crossed a threshold, the MIH client may send signal measurements to a MIH server. After receiving a media independent handover switch request, the MIH client may initiate handover to the second network.
摘要:
A wireless transmit/receive unit (WTRU) may include an IEEE 802.16 modem, a universal mobile telecommunication system (UMTS) modem and a media independent handover (MIH) entity. Software application programming interfaces provide the MIH entity with mechanisms to receive information about IEEE 802.16 and UMTS links, control IEEE 802.16 and UMTS modems for handover, discover an MIH server and IP multimedia system nodes, trigger mobile IP handover, etc. If an IEEE 802.16 link has been successfully established, the MIH entity starts an MIH session. When the IEEE 802.16 modem indicates that a connection is going to be terminated, the MIH entity activates the UMTS modem for handover. If the IEEE 802.16 modem indicates that a link parameter has crossed a threshold, the MIH entity sends IEEE 802.16 and WCDMA signal measurements to an MIH server. After receiving an MIH switch request, the MIH entity initiates handover to the UMTS network.
摘要:
A wireless transmit/receive unit (WTRU) may include an IEEE 802.16 modem, a universal mobile telecommunication system (UMTS) modem and a media independent handover (MIH) entity. Software application programming interfaces provide the MIH entity with mechanisms to receive information about IEEE 802.16 and UMTS links, control IEEE 802.16 and UMTS modems for handover, discover an MIH server and IP multimedia system nodes, trigger mobile IP handover, etc. If an IEEE 802.16 link has been successfully established, the MIH entity starts an MIH session. When the IEEE 802.16 modem indicates that a connection is going to be terminated, the MIH entity activates the UMTS modem for handover. If the IEEE 802.16 modem indicates that a link parameter has crossed a threshold, the MIH entity sends IEEE 802.16 and WCDMA signal measurements to an MIH server. After receiving an MIH switch request, the MIH entity initiates handover to the UMTS network.
摘要:
A method and apparatus for Inter-Device Session Continuity (IDSC). IDSC may include session transfer, session duplication, peer discovery, media transport control, session retrieval, and peer device detection of media streams between wireless transmit receive units (WTRUs) in real-time via Inter-User Equipment Transfer (IUT) across any internet protocol (IP) based network. This framework allows for both collaborative and non-collaborative media sessions, media session transport and shared media session control under the same subscription or multiple subscriptions.
摘要:
Systems and methods are provided for routing internet protocol (IP) traffic flows when connected to a mobile network and a local network. A wireless transmit and receive unit (WTRU) determines whether to offload an IP traffic flow from the mobile network to the local network based on the destination address of the IP traffic flow. When the destination address is local, the WTRU routes the IP traffic flow through local network. The WTRU determines whether to offload IP traffic to the local network based on the stability state of the local network When the local network connection is sufficiently stable for the application associated with the IP traffic, the IP traffic is offloaded to the local network by selecting the local IP address as the source IP address.
摘要:
A WTRU may receive a first data flow from a source device such as a correspondence node and perform a seamless IUT such that the correspondent node is unaware that the flow has been transferred to a different WTRU. The WTRU may register with a first home agent, wherein the first home agent receives a plurality of messages addressed for a home address. The home agent may forward the messages to the WTRU at a first care-of-address. The WTRU may send a binding update to the first home agent. The binding update may comprise a second traffic selector and a second action. The second action may specify that a second message of the plurality of messages is to be forwarded to a different WTRU when the second message matches the second traffic selector.
摘要:
A method and an apparatus for a proxy mobile Internet protocol (PMIP) supporting a dedicated multicast local mobility anchor (LMA) and mobile access gateway (MAG) is provided. The LMA assigns an Internet Protocol (IP) address to a wireless transmit receive unit (WTRU) that processes the IP address and sends a router solicitation message to a serving MAG. A WTRU is disclosed to receive a first IP address that is for unicast service and a second IP address that is for multicast services. Generally, the method and apparatus proposes architecture, interfaces, and procedures to enable multicast mobility using Proxy Mobile IP. More specifically operations of aggregated PMIP tunnels for multicast services are described. Multicast mobility is enabled when mobile nodes move from one MAG to another MAG, intra-LMA, and inter-LMA. And, Multicast mobility is enabled between bidirectional network and downlink only multicast network in a hybrid network.