Abstract:
An electrical connector shield configured to be attached to a shielded wire cable having a conductive wire cable and a shield conductor surrounding the wire cable that is separated from the wire cable by an inner insulator. The shielded wire cable further has an insulative jacket surrounding the outer shield. The electrical shield connector includes a connection portion for connection with a corresponding mating electrical connector shield and an attachment portion having a conductor crimp wing for attachment to the outer shield and an insulator crimp wing for attachment to the insulative jacket. The insulator crimp wing defines a prong having a pointed end to penetrate the insulative jacket. The end of the prong penetrates the insulative jacket but does not penetrate the inner insulator. The connector shield may define a protruding triangular lock tang to engage a lock edge within a cavity of an electrical connector body.
Abstract:
An electrical connection system configured to terminate electrical connectors and to transmit digital electrical signals having a data transfer rate of 5 Gigabits per second (Gb/s) or higher. The system includes a first parallel mirrored pair of terminals having a planar connection portion and a second pair of parallel mirrored terminals having a cantilever beam portion and a contact points configured to contact the first terminals. The cantilever beam portions are generally perpendicular to the planar connection portions. The terminals cooperate to provide consistent characteristic impedance. The connection system further includes an electromagnetic shield that longitudinally surrounds the terminals. The connection system is suited for terminating wire cables transmitting digital signals using data transfer protocols such as Universal Serial Bus (USB) 3.0 and High Definition Multimedia Interface (HDMI) 1.3.
Abstract:
A wire cable assembly capable of transmitting signals at speeds of 5 Gigabits per second over a single pair or conductors. The cable has a characteristic impedance of 95 Ohms and can support transmission data according to either USB 3.0 or HDMI 1.3 performance specifications. The wire cable includes a pair of conductors, a shield surrounding the conductors, and a dielectric structure configured to maintain a first predetermined spacing between the conductors and a second predetermined spacing between said the conductors said shield. The shield includes an inner shield conductor enclosing the dielectric structure, a ground conductor external to the inner shield conductor, extending generally parallel to the pair of conductors, an outer shield conductor enclosing the inner shield conductor and the ground conductor.
Abstract:
A shielded, or coaxial, electrical cable assembly including a female shield connected to the outer conductor, or shield, of the cable. The female shield is configured to mate with a male shield to maintain the continuity of the shield in a connection. The male shield includes a flexible protrusion that is designed to align with and snap into an aperture defined in the female shield, thereby providing a mechanical connection between the male and female shields. The male shield also defines a flexible contact adapted to closely engage an interior surface of the female exterior shield, thereby providing an electrical connection between the male and female shields. The flexible protrusion and the flexible contact flex along axes that are generally orthogonal to one another so the flexible contact interacts with the female exterior shield substantially independently of the flexible protrusion.
Abstract:
A shielded electrical header assembly is provided. The header is configured to be coupled to a first connector connected to a shielded electrical cable and second connector. The header is also configured to be attached to an electrically conductive panel, such as an aluminum battery pack in a hybrid or electric vehicle. The header includes a conductive shield contact that connects the outer conductor of the shielded cable to the panel and a conductive outer connector body that is also connected to the panel and surrounds the terminals and the shield contact of the header, thus providing electromagnetic shielding to the terminals of the header and the connectors. The shield contact is formed of a sheet metal to provide a lower resistance connection between the outer conductor and the panel. A method of manufacturing such a header is also provided.