摘要:
A method for assembling a population of ferrules to minimize the eccentricity of the fibers typically includes the steps of selecting a set of ferrules, determining the eccentricity of the ferrules, selecting a fiber, inserting the fiber within the ferrule bore, orienting the fiber within the ferrule, and securing the fiber in place. The result is a population of ferrules that can be mated with little or no insertion loss.
摘要:
Optical couplings for making and optical connection between one or more devices are disclosed. In one embodiment, an optical coupling includes a coupling face, an optical interface within the coupling face, an optical component positioned within the optical interface, and at least one coded magnetic array. The at least one coded magnetic array may include a plurality of magnetic regions configured aid in mating the optical component with a corresponding optical component of a complementary mated optical coupling to a predetermined tolerance for optical communication. Optical cable assemblies and electronics devices having optical couplings with optical interfaces using coded magnetic arrays are also disclosed.
摘要:
Cable assemblies, optical connector assemblies, and optical connector subassemblies employing a translating element and a unitary alignment pin are disclosed. In one embodiment, an optical connector assembly includes a connector housing defining a connector enclosure and a connector housing opening, a unitary alignment pin including a first pin portion and a second pin portion, and a translating element including a first bore, a second bore, and an optical interface. The unitary alignment pin is secured within the connector enclosure. The first pin portion is disposed within the first bore and the second pin portion is disposed within the second bore such that the translating element translates along the first pin portion and the second pin portion within the connector enclosure.
摘要:
Optical fiber ferrules (10, 20) for making optical or optical and electrical connections are disclosed, along with receptacle and plug fiber optic interface devices (60, 70) using the ferrules, and cable assemblies (6, 7) using the fiber optic interface devices. The optical fiber ferrules support optical pathways (14) and have front ends (12F, 22F) with mating geometries that facilitate a relatively high number of mating/unmating cycles. The ferrule is translatable within the enclosure (62e, 72e). Resilient members (75) provide the ferrule with forward-bias and rear-bias positions when the fiber optic interface device is un-mated and mated, respectively.
摘要:
A cleaning tool for cleaning internal optical components of a fiber optic connector includes a cleaning strip that is advanced past one or more optical surfaces of the connector to wipe the connector free of contaminants. The cleaning tool includes a drive mechanism that is operated by rotating a drive, thereby advancing the cleaning strip along a cleaning strip path and into contact with the one or more optical surfaces. The cleaning tool comprises a cleaning tip that functions to place the cleaning strip in proper alignment within the connector in order to clean the optical surfaces that are not available for cleaning at the endface of the connector. Alignment features are provided in the cleaning tip to properly position the cleaning strip relative the optical surfaces.
摘要:
A fiber optic interface device (10) with a positionable cover (100) is disclosed. The device includes a ferrule (50) supported by a housing (21). The ferrule has a front section (65) with a surface (66) and is configured to support at least one optical path interface (OPI) at the front-section surface. The cover supports a cleaning member (170) and is positionable in open and closed positions. In the closed position, the cleaning member is proximate to the at least one optical path interface, and in the open position the at least one optical path interface is exposed.
摘要:
A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member. A bonding structure bonds the cable fiber assembly, buffer conduit and movable member so that the cable fiber assembly can translate but not rotate relative to the cable within the NAP. This allows the tap point to “float” within the NAP when the cable fiber assembly needs to translate within the cable.
摘要:
Eccentricity of a optical fiber installed in a passageway of a ferrule is minimized by imposing a force on the end of the optical fiber projecting from the passageway at the ferrule end face to push the optical fiber to a desired position in the passageway, prior to curing an adhesive used for fixing the optical fiber in the passageway, so as to compensate for eccentricity of the passageway. In one embodiment, the force is imposed on the optical fiber by hanging a weight on the optical fiber. In another embodiment, the force is imposed on the optical fiber by using a pressurized jet of fluid. The point of application of the force, the magnitude of the force, and the viscosity of the adhesive are selected such that minimal optical fiber bending occurs, thereby assuring that the optical fiber is positioned at the desired position in the passageway for an appreciable distance from the ferrule end face along the passageway.
摘要:
A factory-prepared preterminated and pre-connectorized fiber optic distribution cable having at least one mid-span access location for providing access to a plurality of preterminated optical fibers pre-connectorized with a multi-fiber connector is provided. Also provided is a method of forming a pre-connectorized fiber optic distribution cable by terminating and pre-connectorizing a predetermined number of the plurality of optical fibers of the cable to create a pre-connectorized mid-span access location. The fiber optic distribution cable provides a low profile mid-span access location that is sufficiently flexible to be installed through relatively small-diameter buried conduits and over aerial installation sheave wheels and pulleys without violating the minimum bend radius of the cable or the optical fibers. A protective encapsulant protects and seals the mid-span access location during cable reeling, unreeling, installation and until the access location is needed for interconnecting a connectorized fiber optic drop or branch cable.
摘要:
A preassembled multifiber connector is provided that includes a connector housing and a windowless multifiber ferrule that is substantially rectangular in lateral cross-section. The windowless multifiber ferrule can be at least partially disposed within an internal cavity defined by the connector housing to thereby form a multifiber connector that is free of optical fibers. Thus, the multifiber connector is capable of being preassembled prior to inserting the plurality of optical fibers into the optical fiber bores defined by the windowless multifiber ferrule. A corresponding method of preassembling a multifiber connector is therefore also provided according to the present invention. A ferrule is also provided that is capable of being selectively converted from a windowless configuration to a windowed configuration. The ferrule of this embodiment includes a ferrule body that not only defines at least one optical fiber bore, but that also defines a well extending through a side surface of the ferrule body. The ferrule body also includes a removable web at least partially covering the well to thereby define the windowless configuration of the ferrule. The web is capable of being selectively removed from the well such that the uncovered well forms a window through the side surface of the ferrule that opens into the at least one optical fiber bore to thereby define a windowed configuration of the ferrule.