摘要:
Methods and systems for delivering a pacing pulse to an atrium during a cardiac cycle. A retrograde P-wave may be identified during the cardiac cycle, indicative of sub-threshold atrial pacing. Delivery of the pacing pulse to the atrium may be adjusted in a subsequent cardiac cycle in response to identifying the retrograde P-wave. Adjusting delivery of the pacing pulse may involve initiating an atrial capture threshold test, temporarily increasing one or both of the pacing pulse amplitude and pulse width, and/or re-evaluating one or both of the pacing pulse amplitude and pulse width. Adjusting delivery of the pacing pulse may also involve altering the timing of a scheduled atrial capture threshold test. During an atrial capture threshold test, a retrograde P-wave template may be generated in response to atrial non-capture sensed during the atrial capture threshold test, and used to identify subsequent retrograde P-waves.
摘要:
In one embodiment, an external programming device is operable to determine and graphically display power consumption of an implantable medical device (“IMD”). In accordance with this particular embodiment, the external programming device includes a graphical user interface display and a communication interface operable to receive information from an IMD. In this embodiment, the external programming device is operable to receive IMD parameter settings and/or battery parameter values from the IMD, calculate a power consumption rate for the IMD, and then display the power consumption on the graphical user interface display using a graphical visual indicator.
摘要:
Methods and systems involve determining the cardiac response to pacing pulses. The variability cardiac signal features detected during initialization is used to establish a variability threshold. A cardiac signal associated with a pacing pulse is sensed and one or more features of the cardiac signal are detected. The variability of the one or more features is compared to the variability threshold. The cardiac response to the pacing pulse is determined based on the feature variability.
摘要:
Approaches for adjusting the pacing energy delivered by a pacemaker are provided. Adjusting the pacing energy involves performing a plurality of capture threshold tests, each capture threshold test measuring a capture threshold of the heart. One or more measured captured thresholds are selected, including at least one capture threshold that is higher relative to other measured capture thresholds acquired by the plurality of capture threshold tests. The pacing energy is adjusted based on the one or more selected capture thresholds.
摘要:
In one embodiment, an external programming device is operable to determine and graphically display power consumption of an implantable medical device (“IMD”). In accordance with this particular embodiment, the external programming device includes a graphical user interface display and a communication interface operable to receive information from an IMD. In this embodiment, the external programming device is operable to receive IMD parameter settings and/or battery parameter values from the IMD, calculate an power consumption rate for the IMD, and then display the power consumption on the graphical user interface display using a graphical visual indicator.
摘要:
Cardiac devices and methods provide adaptation of detection windows used to determine a cardiac response to pacing. Adapting a detection window involves sensing a cardiac signal indicative of a particular type of cardiac pacing response, and detecting a feature of the sensed cardiac signal. The cardiac response detection window associated with the type of cardiac pacing response is preferentially adjusted based on the location of the detected cardiac feature. Preferential adjustment of the detection window may involve determining a direction of change between the detection window and the detected feature. The detection window may be adapted more aggressively in a more preferred direction and less aggressively in a less preferred direction.
摘要:
Methods and systems involve determining the cardiac response to pacing pulses. The variability cardiac signal features detected during initialization is used to establish a variability threshold. A cardiac signal associated with a pacing pulse is sensed and one or more features of the cardiac signal are detected. The variability of the one or more features is compared to the variability threshold. The cardiac response to the pacing pulse is determined based on the feature variability.
摘要:
Methods and systems are directed to selecting from a variety of capture verification modes. A plurality of capture verification modes, including a beat by beat capture detection mode and a capture threshold testing mode without intervening beat by beat capture detection is provided. An efficacy of at least one of the capture verification modes is evaluated and, based on the evaluation, a capture verification mode is selected.
摘要:
In one embodiment, an external programming device is operable to determine and graphically display power consumption of an implantable medical device (“IMD”). In accordance with this particular embodiment, the external programming device includes a graphical user interface display and a communication interface operable to receive information from an IMD. In this embodiment, the external programming device is operable to receive IMD parameter settings and/or battery parameter values from the IMD, calculate a power consumption rate for the IMD, and then display the power consumption on the graphical user interface display using a graphical visual indicator.
摘要:
Methods and systems for detecting noise in cardiac pacing response classification processes involve determining that a cardiac response classification is possibly erroneous if unexpected signal content is detected. The unexpected signal content may comprise signal peaks that have polarity opposite to the polarity of peaks used to determine the cardiac response to pacing. Fusion/noise management processes include pacing at a relatively high energy level until capture is detected after a fusion, indeterminate or possibly erroneous pacing response classification is made. The relatively high energy pacing pulses may be delivered until capture is detected or until a predetermined number of paces are delivered.