METHOD AND SYSTEM FOR KEYWORD CORRELATION IN A MOBILE ENVIRONMENT
    3.
    发明申请
    METHOD AND SYSTEM FOR KEYWORD CORRELATION IN A MOBILE ENVIRONMENT 审中-公开
    移动环境中关键词相关的方法和系统

    公开(公告)号:US20090125517A1

    公开(公告)日:2009-05-14

    申请号:US12268914

    申请日:2008-11-11

    摘要: Methods and systems for determining a suitability for a mobile client to display information are disclosed. A particular exemplary method includes receiving a plurality of sets of one or more first keywords on a mobile client, each set of first keywords associated with one or more respective first messages, monitoring user interaction of the respective first messages on the mobile client, determining a user selection rate for each unique first keyword of the plurality of sets of first keywords, receiving a set of target keywords associated with a target message, performing one or more matching operations between the set of target keywords and corresponding user selection rates to produce a set of one or more matching parameters, and displaying the target message on the mobile client dependent upon the matching parameters.

    摘要翻译: 公开了用于确定移动客户端显示信息的适用性的方法和系统。 特定示例性方法包括在移动客户端上接收多组一个或多个第一关键字,每组与一个或多个相应的第一消息相关联的第一关键字,监视移动客户端上相应第一消息的用户交互,确定 用户选择率,用于接收与目标消息相关联的一组目标关键字,在目标关键词集合和对应的用户选择率之间执行一个或多个匹配操作以产生一组 的一个或多个匹配参数,并且根据匹配参数在移动客户端上显示目标消息。

    DELIVERY OF TARGETED CONTENT RELATED TO A LEARNED AND PREDICTED FUTURE BEHAVIOR BASED ON SPATIAL, TEMPORAL, AND USER ATTRIBUTES AND BEHAVIORAL CONSTRAINTS
    4.
    发明申请
    DELIVERY OF TARGETED CONTENT RELATED TO A LEARNED AND PREDICTED FUTURE BEHAVIOR BASED ON SPATIAL, TEMPORAL, AND USER ATTRIBUTES AND BEHAVIORAL CONSTRAINTS 审中-公开
    基于空间,时间和用户属性和行为约束的学习和预测未来行为相关的目标内容的传递

    公开(公告)号:US20110282964A1

    公开(公告)日:2011-11-17

    申请号:US12779372

    申请日:2010-05-13

    IPC分类号: G06F15/16

    CPC分类号: G06Q30/02

    摘要: Methods and apparatuses and for determining suitability to display information from an information source, such as an advertiser, to a mobile client are described. Learning distribution vectors are tagged to specific content in the information by the advertiser and delivered with the derived learning distribution vectors to the mobile client. The mobile client refines the derived learning distribution vectors based on any one or more combinations of temporal, spatial, attributes, behavioral constraints of the user using context independent/context aware/prediction schemes to determine suitability of the content for display to the user.

    摘要翻译: 描述了方法和装置以及用于确定从信息源(例如广告商)向移动客户端显示信息的适用性。 学习分配向量被标记给广告商的信息中的特定内容,并且与派生的学习分发向量一起传递给移动客户端。 移动客户端基于使用上下文独立/上下文感知/预测方案的用户的时间,空间,属性,行为约束的任何一个或多个组合来优化派生的学习分布向量,以确定用于向用户显示的内容的适用性。