Abstract:
A test system for a digital integrated circuit in which internal states of the integrated circuit are captured non-destructively while the digital circuit is operating at normal clock speed. Cells for capturing states are sequentially connected into shift registers. Once internal states are latched within cells, the captured states are serially shifted out a test port while the integrated circuit continues to operate. State sampling is triggered internally via a software command or externally via an external signal synchronized to an internal clock.
Abstract:
In one embodiment, a clock pulse width control circuit, comprises a plurality of timer circuits to generate a corresponding plurality of delayed pulse signals from an input clock signal, a corresponding plurality of AND gates, each AND gate generating an output signal from a delayed pulse signal and the input clock signal, and a selection circuit to select one of the output signals.
Abstract:
In one embodiment, a clock pulse width control circuit, comprises a plurality of timer circuits to generate a corresponding plurality of delayed pulse signals from an input clock signal, a corresponding plurality of AND gates, each AND gate generating an output signal from a delayed pulse signal and the input clock signal, and a selection circuit to select one of the output signals.
Abstract:
Two synchronizing flip-flops synchronize the transitions of a slow clock to a fast clock. The state of a version of the synchronized slow clock is stored by a last-state flip-flop that is clocked on an edge of the fast clock. The last-state flip-flop is compared by logic to a version of the synchronized slow clock to produce a pulse with a width determined by either a phase of the fast clock or a cycle of the fast clock.