Abstract:
Example embodiments of systems, methods, and computer-accessible mediums for identity verification and transaction authentication are provided. An exemplary system can comprise an application, a user device, and a server. The application can prompt a removal of a card chip, prompt an insertion of the card chip into the user device, determine an orientation of the card chip after the insertion of the card chip into the user device, and transmit, to the card chip, a first message. The card chip can encrypt the first message via one or more authentication protocols to generate an encrypted first message, transmit, to the server, the encrypted first message. The server can decrypt the encrypted first message, verify the decrypted first message, and transmit a second message to the application, wherein the application is configured to display a verification notification in response to the second message.
Abstract:
Example embodiments of systems, methods, and computer-accessible mediums for identity verification and transaction authentication are provided. An exemplary system can comprise an application, a user device, and a server. The application can prompt a removal of a card chip, prompt an insertion of the card chip into the user device, determine an orientation of the card chip after the insertion of the card chip into the user device, and transmit, to the card chip, a first message. The card chip can encrypt the first message via one or more authentication protocols to generate an encrypted first message, transmit, to the server, the encrypted first message. The server can decrypt the encrypted first message, verify the decrypted first message, and transmit a second message to the application, wherein the application is configured to display a verification notification in response to the second message.
Abstract:
An adaptive driver includes a gate driver having at least one driving transistor for driving a control node of switching transistor(s) that includes an output node (OUT) which provides Vout. An adjustable current source is in series with the driving transistor, a high pass filter (HPF) is between OUT and ground for detecting a slew rate of the switching transistor and outputting a voltage pulse (Vslp) output having a peak voltage amplitude at least monotonically reflecting a slope of Vout during switching. Detection signal processing circuitry is coupled to the output of the HPF for processing Vslp and slew rate control circuitry has an input coupled to the output of the detection signal processing circuitry. The output of the slew rate control circuitry is coupled to the current source for controlling its current level for changing the slew rate of the switching transistor to provide a desired slew rate range.
Abstract:
Electronic circuits and memory circuits are provided for implementing a method for transforming a chip clock signal to a local clock signal. The method includes: generating a first clock signal in response to the chip clock signal, a first control signal and a second control signal; generating a second clock signal by delaying the first clock signal with a second clock delay; generating the first control signal and the second control signal by delaying the second clock signal with a pulse width delay, where the first control signal goes from high-to-low with a control signal delay after the second control signal goes from high-to-low, and vice versa; and generating the local clock signal based on the second clock signal.
Abstract:
A method for correcting the duty cycle of a clock signal uses two-dual-slope integrators with two comparators; each comparator is connected to both integrators and configured to include a “dead band” when the input pulse duty cycle is at or near 50%. One comparator detects when duty cycle is high and the other comparator detects when the duty cycle is low. When the duty cycle is within the “dead band” range, neither comparator goes valid. This provides an analog filter where the output comparators will not instantaneously switch between opposite duty cycle correction states. When the duty cycle is greater or less than 50%, the integrated voltages on the two integrators move in opposite directions producing twice the signal magnitude on differential inputs of the comparators, as compared with using a single integrator architecture.
Abstract:
A method and device for processing a signal (CRK) provided by a bidirectional sensor, the method includes the following steps: generation of a first signal (CRK_CNT) utilizing all the slots of the signal provided by the sensor, generation of a second signal (CRK_FW) utilizing the slots corresponding to a first direction of transit, generation of a third signal (CRK_BW) utilizing the slots corresponding to a second direction of transit, connection of the first signal to the input of the first electronic component, connection of the second and third signals to a second component, detection by the second component of edges of the signals received, change of the value of the predefined threshold (THMI) in the first component upon each detection of an edge.
Abstract:
A system includes an ADC that, based on a first clock signal, converts an analog signal into a digital signal. A first circuit generates a second clock signal based on the digital signal. An interpolator generates a phase delayed version of the second clock signal and a third clock signal. The third clock signal is generated based on the second clock signal and the phase delayed version and includes transitioning from the second clock signal to the phase delayed version. The third clock signal includes pulses each having a first pulse width and a pulse having a second pulse width. The second pulse width is different than the first pulse width due to the transition from the second clock signal to the third clock signal. A second circuit removes the pulse having the second pulse width from the third clock signal to generate the first clock signal.
Abstract:
A device for producing a current pulse includes supply terminals for providing a power supply voltage, and a switch which is situated in a control current branch between the supply terminals, which switch is configured to switch a control current through the control current branch as a function of an actuation signal. The device also has a current mirror having a control transistor and a signal transistor, the control transistor being situated in series to the first switch in the control current branch, and the signal transistor being configured to provide the current pulse as a function of the control current through the control transistor.
Abstract:
Duty cycle based phase interpolators, and methods for implementing duty cycle based phase interpolators are disclosed. One such phase interpolator includes a first pulse width modulator configured to generate a first duty cycle signal, and a second pulse width modulator configured to generate a second duty cycle signal. The phase interpolator further includes a logic unit configured to merge the first duty cycle signal and the second duty cycle signal to produce a periodic digital signal with a controllable phase depending on the first and second duty cycle signals.
Abstract:
A fractional frequency divider including a frequency division unit for generating a reduced frequency timing signal having j pulses for every k pulses of an original timing signal, wherein j and k are each integers; and phase correction circuitry adapted to selectively shift each jth pulse of the reduced frequency timing signal by a first fixed time period.