Abstract:
The present invention relates to C-terminal modified Protoxin II peptides that selectively inhibit the Nav1.7 sodium channel; the present invention also relates to pharmaceutical compositions useful for prophylactic or therapeutic treatment of a disorder responsive to the blockade of sodium ion channels, especially Nav1.7 sodium ion channels; the present invention further provides methods of treating a disorder responsive to the blockade of sodium channels, and particularly Nav1.7 sodium channels, in a mammal suffering from excess activity of said channels.
Abstract:
The substitution of the L-Pro at the 7-position with D-Phe or D-Tic and substitution of the L-Phe at the 8-position with hydroxyproline ethers and thioethers of the peptide hormone bradykinin and other additional substituted analogs of bradykinin converts bradykinin agonists into bradykinin antagonists. The invention further includes additional modifications at other positions within the novel 7- and 8-position modified bradykinin antagonists, which increase enzyme resistance, antagonist potency, and/or specificity of the new bradykinin antagonists. The analogs produced are useful in treating conditions and diseases of a mammal and human in which an excess of bradykinin or related kinins are produced or injected as by insect bites.
Abstract:
Pseudopeptide compounds based on a modified bradykinin sequence are potent bradykinin receptor antagonist. All or a portion of the amino acids at positions 2 through 5 of the bradykinin sequence are replaced by 2-pyrrolidinyl and/or amino-alkanoic acid or related olefinic derivatives to reduce the peptidic nature of the compounds. The analogs produced are useful in treating conditions and diseases of a mammal and human in which an excess of bradykinin or related kinins are produced or injected such as by insect bites.
Abstract:
The substitution of the L-Pro at the 7-position of the peptide hormone bradykinin or other substituted analogs of bradykinin with a D-configuration hydroxyproline ether or thioether converts bradykinin agonists into bradykinin antagonists. The invention further includes the intermediate compounds and additional modifications at other positions within the novel 7-position modified bradykinin antagonists which increase enzyme resistance, antagonist potency, and/or specificity of the new bradykinin antagonists. The analogs produced are useful in treating conditions and diseases of a mammal and human in which an excess of bradykinin or related kinins are produced or injected such as by insect bites.
Abstract:
The substitution of the L-Pro at the 7-position of the peptide hormone bradykinin or other substituted analogs of bradykinin with an isoquinoline derivative which converts bradykinin agonists into bradykinin antagonists. The invention further includes the novel 7-position modified bradykinin antagonists which increase enzyme resistance, antagonist potency, and/or specificity of the new bradykinin antagonists. The analogs produced are useful in treating conditions and diseases of a mammal and human in which an excess of bradykinin or related kinins are produced or injected as by insect bites.
Abstract:
The invention provides bradykinin antagonist compounds wherein many (or all) of the peptide bonds of bradykinin are eliminated to yield compounds which specifically compete with bradykinin for binding to the bradykinin receptor. More particularly, the invention relates to compounds having, in appropriate spatial arrangement, two positively charged moieties flanking a hydrophobic organic moiety and a moiety which mimics a beta turn conformation.