摘要:
A WDM (Wavelength Division Multiplexing) optical transmitter using a Fabry-Perot laser is disclosed. The WDM optical transmitter includes a light source for outputting incoherent light of a prescribed wavelength bandwidth, a circulator having the first to the third ports, for outputting the incoherent light received at the first port coupled to the light source to the second port, and outputting an optical signal received at the second port to the third port coupled to the external waveguide, a WGR (Waveguide Grating Router) having a multiplexing port (MP) coupled to the second port of the circulator and a plurality of demultiplexing ports (DPs), for performing WD (Wavelength Division) demultiplexing on the incoherent light received at the MP to output WD-demultiplexed signals to the plurality of DPs, and performing WD multiplexing on a plurality of channel signals received at the plurality of DPs to output WD-multiplexed signals to the MP, and a plurality of FB (Fabry-Perot) lasers respectively connected to the DPs of the WGR, each FP laser is comprised of a laser cavity, an antireflection coating layer deposited at one end of the laser cavity facing a corresponding DP, and a high reflection coating layer deposited at the other end of the laser cavity, whereby an optical injection efficiency increases and an influence of reflected light is reduced, resulting in facilitation of a wavelength-locked phenomenon.
摘要:
Disclosed is a method for maintaining wavelength-locking of a Fabry-Perot laser regardless of a change of external temperature even though a temperature controller is not used, and a wavelength division multiplexing (WDM) light source using the method, as an economical light source used in a WDM optical communication field. The WDM light source comprises a Fabry-Perot laser for injecting spectrum-spliced incoherent light to amplify and output only an oscillation mode matching with a wavelength of the injected light, and a bias controlling unit for adjusting a bias current supplied to the Fabry-Perot laser to a value adjacent to a threshold current of the Fabry-Perot laser, whose threshold current is changed according to a temperature and a relationship between the injected light changed depending to a temperature and a wavelength of the oscillation mode. Therefore, the bias current having a value adjacent to the threshold current of the Fabry-Perot laser is supplied to the Fabry-Perot laser, so that the Fabry-Perot laser can maintain an excellent transmission characteristic regardless of a change of temperature even though a temperature controller is not used.
摘要:
A method for maintaining the mode-locked state of a Fabry-Perot (FP) laser and a WDM light source using the same method for use in WDM optical communication are disclosed. The mode-locked state can be maintained irrespective of temperature change, without use of a temperature controller, by spectrum-slicing the incoherent light generated by a light source element and injecting the spectrum-sliced light to the FP laser, then the FP laser amplifies and outputs only a lasing mode coinciding with the wavelength of the injected light, wherein a lasing-mode interval of the FP laser is set to be less than a 3 dB linewidth of the injected light, so that at least one lasing mode exists inside the 3 dB linewidth of the injected light irrespective of changes in external temperature.
摘要:
Disclosed is a wavelength division multiplexed passive optical network (WDM PON) system including a central office, a remote Node, and an optical fiber coupled between the central office and the remote node, wherein the central office includes an optical power splitter coupled to the optical fiber, wherein the optical power splitter (1) divides an upstream optical signal from the optical fiber into a plurality of upstream optical signals having substantially similar power and (2) outputs downstream optical signals to the optical fiber, and a plurality of optical transceiver modules to (1) receive the plurality of upstream optical signals, and (2) output the downstream optical signals to the optical power splitter, and wherein at least one of the optical transceiver modules having an optical transmitter including a semiconductor optical amplifier and a reflection-type optical fiber grating located at a predetermined distance from the semiconductor optical amplifier, the optical transmitter transmitting light of a pre-set wavelength resonating between the SOA and reflection-type optical fiber grating; and wherein at least one of the optical transceiver modules having an optical receiver having an optical fiber grating for transmitting light of a predetermined wavelength and an optical detector for detecting light passing through the optical fiber grating.
摘要:
A SCM-PON using WDM includes: an OLT for transferring downstream data from an external service provider through downstream optical signals and transferring upstream data transferred through upstream optical signals to an outside; an ODN for distributing the downstream optical signals from the OLT and multiplexing the upstream optical signals to the OLT; and a plurality of ONUs for processing the downstream optical signals transferred from the OLT through the ODN and transferring upstream data of subscribers for the OLT through the upstream optical signals, wherein the optical signals between the OLT and the ONUs are divided into wavelength channels with different wavelengths and sub-carrier channels obtained by time-dividing the wavelength channels, and the upstream data and the downstream data are transferred through the sub-carrier channels.
摘要:
An economical wavelength-division-multiplexed passive optical network (WDM-PON) system is realized by directly modulating a wavelength-seeded light source to transmit upstream or downstream data, without using an expensive external modulator. A multiplexed signal having the same wavelength as the waveguide grating is generated and used to control the temperature of the waveguide grating and adjust the wavelength of a wavelength-division-multiplexed signal routed to a transfer link. The wavelength selectivity and stabilization of each light source are not required. Since upstream and downstream signals can be multiplexed and demultiplexed concurrently by each waveguide grating located in the central office and the remote node, it is possible to reduce the number of waveguide gratings used in a WDM optical network. In addition, upstream and downstream signals can be transmitted concurrently using a single-strand transfer optical fiber, thereby realizing an economical and efficient WDM-PON.
摘要:
A bi-directional WDM-PON and a method for allocating a wavelength band are disclosed. In the bi-directional WDM-PON, bi-directional transceiver modules are used to transmit optical signals of different wavelengths in the upstream and downstream directions. An L-band and an S-band are used to allocate wavelength bands to the upstream and downstream optical signals so that a wavelength band interval at which the respective wavelength bands of the upstream and downstream optical signals are spaced is set between 50 nm to 150 nm.
摘要:
A wavelength-division-multiplexed passive optical network using an economical multi-wavelength lasing source and a reflective optical amplification device is disclosed. The wavelength-division-multiplexed passive optical network includes a central office in which a multi-wavelength lasing source is located; a plurality of subscriber terminals for transmitting an upward signal by a refection signal of a multi-wavelength signal transmitted from the central office; and a local office, which is connected among the central office and the subscriber terminals through transmission optical fibers, for demultiplexing the multi-wavelength signal transmitted from the central office and transmitting the demultiplexed signal to the subscriber terminals, and for multiplexing signals inputted from each of the subscriber terminals and transmitting the multiplexed signals to the central office.
摘要:
An optical wavelength tracking apparatus and method in a wavelength division multiplexed (WDM) passive optical network (PON) in which a central office (CO) having a multi-frequency light source is connected to a plurality of optical network units (ONUs) having loop-back light sources through a WDM MUX/DEMUX in a remote node (RN). The power levels of downstream and upstream WDM optical signals are measured. The WDM wavelengths of the multi-frequency light source and the WDM MUX/DEMUX are controlled to be nearly identical in order to minimize the difference between the power levels of the downstream and upstream WDM optical signals.
摘要:
A bi-directional metro-access optical network includes a central office for generating beams of different wavelength bands and a plurality of wavelength locked downward optical signals and for detecting wavelength locked upward optical signals; a plurality of nodes for detecting the downward optical signals of different wavelengths and for generating the wavelength locked upward optical signals of which wavelengths are locked by respective wavelength beams; a first optical fiber line for linking together each of the nodes with the central office in a ring shape, transmitting the upward optical signals to the central office, and transmitting the downward optical signals and the beams to each of the nodes; and a second optical fiber line for linking together each of the nodes with the central office in a ring shape along the circumference of the first optical fiber line.