摘要:
An improved ternary noble metal-containing, alloy catalyst which has a catalytic activity for the electrochemical reduction of oxygen greater than two and one-half times that of the supported unalloyed noble metal alone. In addition, a disclosure of the method of preparing said catalyst is by intimately contacting two metallic elements with a supported noble metal, then heating this material to form the ternary alloy catalyst. This catalyst has particular utility for the electrochemical reduction of oxygen which makes it particularly useful as a cathode in acid fuel cells. The preferred embodiment of this catalyst is finely divided platinum alloyed with chromium and cobalt supported on an electrically conductive carbon-black support material.
摘要:
An improved ternary alloy catalyst for fuel cells containing platinum and gallium. The method of fabricating the catalyst in a high surface area supportive form is also described. The resultant fuel cell catalyst displays a substantial resistance to sintering during operation combined with a resistance to a chemical dissolution during operation. These enhancements permit improved long-term operation of fuel cells.
摘要:
A novel and improved noble metal-chromium alloy catalyst is disclosed with catalytic oxygen reduction activity at least twice that of the unalloyed noble metal. The noble metal-chromium alloy catalyst disclosed has particular utility as an electrocatalyst for the reduction of oxygen which makes it particularly useful as a cathode catalyst in an acid fuel cell.
摘要:
A novel and improved noble metal-chromium alloy catalyst is disclosed with catalytic oxygen reduction activity at least twice that of the unalloyed noble metal. The noble metal-chromium alloy catalyst disclosed has particular utility as an electrocatalyst for the reduction of oxygen which makes it particularly useful as a cathode catalyst in an acid fuel cell.
摘要:
An improved ternary alloy catalyst for fuel cells containing platinum and gallium. The method of fabricating the catalyst in a high surface area supportive form is also described. The resultant fuel cell catalyst displays a substantial resistance to sintering during operation combined with a resistance to a chemical dissolution during operation. These enhancements permit improved long-term operation of fuel cells.
摘要:
A ternary alloy catalyst for the electrochemical reduction of oxygen is disclosed. Various methods of making the catalyst are developed. The catalyst has an ordered structure which improves stability and the specific activity of the catalyst.
摘要:
A ternary alloy catalyst for the electrochemical reduction of oxygen is disclosed. Various methods of making the catalyst are developed. The catalyst has an ordered structure which improves stability and the specific activity of the catalyst.
摘要:
An improved ternary noble metal-containing, alloy catalyst which has a catalytic activity for the electrochemical reduction of oxygen greater than two and one-half times that of the supported unalloyed noble metal alone. In addition, a disclosure of the method of preparing said catalyst is by intimately contacting two metallic elements with a supported noble metal, then heating this material to form the ternary alloy catalyst. This catalyst has particular utility for the electrochemical reduction of oxygen which makes it particularly useful as a cathode in acid fuel cells. The preferred embodiment of this catalyst is finely divided platinum alloyed with chromium and cobalt supported on an electrically conductive carbon-black support material.
摘要:
A noble metal ternary alloy catalyst, which has increased mass activity and stability. This catalyst comprises a ternary alloy of platinum, iridium and a metal selected from the group consisting of iron, chromium, cobalt, nickel, vanadium, titanium and manganese.
摘要:
A method for making a fuel cell electrode is disclosed. A layer of hydrophobic polymer and an electro-catalyst is deposited on the surface of a porous electrode substrate and press-sintered by heating the catalyst layer to a temperature between the melting point and decomposition temperature of the polymer and simultaneously compressing the layer at a pressure between 20 pounds per square inch and 100 pounds per square inch. The heating and compressing are continued for a time period of between 10 minutes and 20 minutes. A fuel cell electrode made by the above method and a method for generating electricity using such an electrode are also disclosed. A press-sintered fuel cell electrode provides improved peak performance as well as improved tolerance to electrolyte solidification.