摘要:
A fuel cell system includes a first heating structure that increases an internal temperature of the stack by passing exhaust gas of the process burner through the stack; and a second heating structure that increases the internal temperature of the stack by passing heated cooling water through the stack after the cooling water is heated by heat exchange with the exhaust gas of the process burner. Accordingly, when rapid heating of a stack is necessary like during a start up operation, a time required for the fuel cell system to reach a normal operation can be greatly reduced since the stack can be simultaneously heated using high temperature exhaust gas and heated cooling water.
摘要:
A method of starting a polymer electrolyte membrane fuel cell (PEMFC) stack by rapidly increasing its temperature. The PEMFC stack includes: a first flow line connected to cooling plates; a second flow line connected to the cooling plates; a coolant reservoir; a heat exchanger; a by-pass line; a heating element; a first valve installed between the first flow line and the heat exchanger; and a second valve that selectively connects the coolant reservoir, the second flow line, and the by-pass line. The method of starting a PEMFC stack includes: closing the first valve and controlling the second valve so that the second flow line and the by-pass line are connected to each other, and the coolant in the coolant reservoir is not connected to the second flow line and the by-pass line; and heating the coolant in the by-pass line.
摘要:
A fuel cell system includes a first heating structure that increases an internal temperature of the stack by passing exhaust gas of the process burner through the stack; and a second heating structure that increases the internal temperature of the stack by passing heated cooling water through the stack after the cooling water is heated by heat exchange with the exhaust gas of the process burner. Accordingly, when rapid heating of a stack is necessary like during a start up operation, a time required for the fuel cell system to reach a normal operation can be greatly reduced since the stack can be simultaneously heated using high temperature exhaust gas and heated cooling water.
摘要:
A fuel cell system a includes a cooling water temperature raising unit that raises the temperature of a fuel cell stack by passing discharge gas of a process burner or hydrogen gas of a fuel processing unit and cooling water that is heated by the discharge gas of the process burner through flow paths formed on opposing surfaces of cooling separators formed of a metal and installed between a plurality of cells in the stack. Thus in the fuel cell system, when the temperature of the stack needs to be rapidly raised, for example, during a start up operation of the fuel cell system, the temperature of the stack can be rapidly raised using discharge gas at a high temperature or combustion heat of hydrogen gas, and heated cooling water, and thereby, significantly reducing the time required for the fuel cell system to be in regular operation.
摘要:
A fuel cell system a includes a cooling water temperature raising unit that raises the temperature of a fuel cell stack by passing discharge gas of a process burner or hydrogen gas of a fuel processing unit and cooling water that is heated by the discharge gas of the process burner through flow paths formed on opposing surfaces of cooling separators formed of a metal and installed between a plurality of cells in the stack. Thus in the fuel cell system, when the temperature of the stack needs to be rapidly raised, for example, during a start up operation of the fuel cell system, the temperature of the stack can be rapidly raised using discharge gas at a high temperature or combustion heat of hydrogen gas, and heated cooling water, and thereby, significantly reducing the time required for the fuel cell system to be in regular operation.
摘要:
A power conditioner for supplying controlled power generated from a power source such as a fuel cell or a solar battery to a load. The power conditioner includes a main converter converting the output voltage of the power source; an auxiliary converter converting the output voltage of the main converter to a voltage that is supplied to BOP elements; and a direct connecting line connecting the output voltage of the power source to the auxiliary converter bypassing the main converter. Accordingly, because the voltage for the power to be supplied to the BOP elements is converted only once, the power loss can be significantly reduced compared to the power loss from a conventional power conditioner.
摘要:
A power conditioner includes a main converter to transform a voltage outputted from a power source into a first transformed voltage and output the first transformed voltage to supply power to a power using point; and an auxiliary converter to transform the first transformed voltage outputted from the main converter into a second transformed voltage and output the second transformed voltage to supply power to balance-of-plant (BOP) elements including driving devices of the power source. The main converter includes a first winding to transform the voltage outputted from the power source into the first transformed voltage and output the first transformed voltage to supply power to the power using point; and a second winding to transform the voltage outputted from the power source into a third transformed voltage and output the third transformed voltage to supply power directly to the BOP elements, thereby bypassing the auxiliary converter.
摘要:
A power conditioner includes a main converter to transform a voltage outputted from a power source into a first transformed voltage and output the first transformed voltage to supply power to a power using point; and an auxiliary converter to transform the first transformed voltage outputted from the main converter into a second transformed voltage and output the second transformed voltage to supply power to balance-of-plant (BOP) elements including driving devices of the power source. The main converter includes a first winding to transform the voltage outputted from the power source into the first transformed voltage and output the first transformed voltage to supply power to the power using point; and a second winding to transform the voltage outputted from the power source into a third transformed voltage and output the third transformed voltage to supply power directly to the BOP elements, thereby bypassing the auxiliary converter.
摘要:
A power conditioner for supplying controlled power generated from a power source such as a fuel cell or a solar battery to a load. The power conditioner includes a main converter converting the output voltage of the power source; an auxiliary converter converting the output voltage of the main converter to a voltage that is supplied to BOP elements; and a direct connecting line connecting the output voltage of the power source to the auxiliary converter bypassing the main converter. Accordingly, because the voltage for the power to be supplied to the BOP elements is converted only once, the power loss can be significantly reduced compared to the power loss from a conventional power conditioner.