摘要:
The present invention provides a closed-loop system for real-time control of epidural and/or subdural electrical stimulation comprising: means for applying to a subject neuromodulation with adjustable stimulation parameters, said means being operatively connected with a real-time monitoring component comprising sensors continuously acquiring feedback signals from said subject, said signals being neural signals and/or signals providing features of motion of said subject, said system being operatively connected with a signal processing device receiving said feedback signals and operating real-time automatic control algorithms, said signal processing device being operatively connected with said means and providing said means with new stimulation parameters, with minimum delay. The system of the invention improves consistency of walking in a subject with a neuromotor impairment. A Real Time Automatic Control Algorithm is used, comprising a feedforward component employing a single input-single output model (SISO), or a multiple input-single output (MISO) model.
摘要:
The present invention provides a closed-loop system for real-time control of epidural and/or subdural electrical stimulation comprising: means for applying to a subject neuromodulation with adjustable stimulation parameters, said means being operatively connected with a real-time monitoring component comprising sensors continuously acquiring feedback signals from said subject, said signals being neural signals and/or signals providing features of motion of said subject, said system being operatively connected with a signal processing device receiving said feedback signals and operating real-time automatic control algorithms, said signal processing device being operatively connected with said means and providing said means with new stimulation parameters, with minimum delay. The system of the invention improves consistency of walking in a subject with a neuromotor impairment. A Real Time Automatic Control Algorithm is used, comprising a feedforward component employing a single input-single output model (SISO), or a multiple input-single output (MISO) model.
摘要:
The present invention provides a closed-loop system for real-time control of epidural and/or subdural electrical stimulation comprising: means for applying to a subject neuromodulation with adjustable stimulation parameters, said means being operatively connected with a real-time monitoring component comprising sensors continuously acquiring feedback signals from said subject, said signals being neural signals and/or signals providing features of motion of said subject, said system being operatively connected with a signal processing device receiving said feedback signals and operating real-time automatic control algorithms, said signal processing device being operatively connected with said means and providing said means with new stimulation parameters, with minimum delay. The system of the invention improves consistency of walking in a subject with a neuromotor impairment. A Real Time Automatic Control Algorithm is used, comprising a feedforward component employing a single input-single output model (SISO), or a multiple input-single output (MISO) model.
摘要:
The present disclosure provides a closed-loop system for real-time control of epidural and/or subdural electrical stimulation comprising electrodes for applying to a subject neuromodulation with adjustable stimulation parameters, the electrodes being operatively connected with a real-time monitoring component comprising sensors continuously acquiring feedback signals from said subject, said signals being neural signals and/or signals providing features of motion of said subject, said system being operatively connected with a signal processing device receiving said feedback signals and operating real-time automatic control algorithms, said signal processing device being operatively connected with the electrodes said and providing the electrodes with new stimulation parameters, with minimum delay. The system of the disclosure improves consistency of walking in a subject with a neuromotor impairment. A Real Time Automatic Control Algorithm is used, comprising a feedforward component employing a single input-single output model (SISO), a multiple input-single output (MISO) model, or a multiple input-multiple output (MIMO) model.
摘要:
Methods and systems are provided for triggering electrical stimulation of a spinal cord during execution of a motor event. In one example, a method comprises monitoring motor cortex activity while execution of a desired motor movement is attempted during a first mode where one or more nerve fibers are not stimulated, and during a second mode where the one or more nerve fibers are stimulated. Delivery timing of electrical stimulation may be closed-loop controlled based on current motor cortex activity and the motor cortex activity recorded previously during both the first and second modes.
摘要:
Methods and systems are provided for triggering electrical stimulation of a spinal cord during execution of a motor event. In one example, a method comprises monitoring motor cortex activity while execution of a desired motor movement is attempted during a first mode where one or more nerve fibers are not stimulated, and during a second mode where the one or more nerve fibers are stimulated. Delivery timing of electrical stimulation may be closed-loop controlled based on current motor cortex activity and the motor cortex activity recorded previously during both the first and second modes.
摘要:
The present invention provides a closed-loop system for real-time control of epidural and/or subdural electrical stimulation comprising: means for applying to a subject neuromodulation with adjustable stimulation parameters, said means being operatively connected with a real-time monitoring component comprising sensors continuously acquiring feedback signals from said subject, said signals being neural signals and/or signals providing features of motion of said subject, said system being operatively connected with a signal processing device receiving said feedback signals and operating real-time automatic control algorithms, said signal processing device being operatively connected with said means and providing said means with new stimulation parameters, with minimum delay. The system of the invention improves consistency of walking in a subject with a neuromotor impairment. A Real Time Automatic Control Algorithm is used, comprising a feedforward component employing a single input-single output model (SISO), or a multiple input-single output (MISO) model.