Abstract:
A constant fault alarm rate (CFAR) device for a signal detection system is disclosed herein. The CFAR device includes a first signal selection unit and a second signal selection unit. The first signal selection unit receives a last signal of a lagging sorting array and signals of one or more lagging guard cells, selects any one of the last signal of the lagging sorting array and the signals of the one or more lagging guard cell as a test signal based on a received guard cell size, and outputs the test signal. The second signal selection unit receives the test signal and signals of one or more leading guard cells, selects any one of the test signal and the signals of the one or more leading guard cells based on the guard cell size, and transfers this selected signal to the leading sorting array.
Abstract:
Disclosed herein are a radar apparatus and a method of operating the same. The radar apparatus includes a clutter analysis unit, a screen change detection unit, a representative value acquisition unit, and a target detection unit. The clutter analysis unit analyzes the clutter value of a signal that is received by a reception unit. The screen change detection unit calculates the screen change time up to the time at which a screen has been changed from an image captured by an imaging apparatus. The representative value acquisition unit acquires a representative value based on a plurality of clutter values analyzed for the screen change time by the clutter analysis unit. The target detection unit determines the signal to be a target signal if the size of the signal is larger than both the clutter value and representative value of the signal.
Abstract:
An apparatus and method for improving voice recognition are disclosed herein. The apparatus includes a standard voice transmission unit, a Mel-frequency cepstrum coefficient (MFCC) generation unit, and an MFCC compensation unit. The standard voice transmission unit generates a standard voice. The MFCC generation unit generates voice feature data (MFCC) based on the utterance of the standard voice before voice recognition. The MFCC compensation unit stores a gain value generated based on the standard voice, and compensates for the distortion of the voice feature data based on the utterance of a user using the gain value during the voice recognition.
Abstract:
Disclosed herein are a mixed-radix pipelined Fast Fourier Transform (FFT) processor and an FFT processing method using the same. The mixed-radix pipelined Fast Fourier Transform (FFT) processor includes a first radix chain, a second radix chain, an input buffer, and an output buffer. The first radix chain includes first radix processors that are connected in series to each other. The second radix chain includes second radix processors that are connected in series to each other, and is connected in series to the first radix chain. The input buffer performs index mapping on a sequence input to the first radix chain. The output buffer generates a final FFT output by performing index mapping on a sequence generated using outputs of one or more of the first and second radix chains.
Abstract:
The present invention relates to a reference signal generation method and apparatus. In the reference signal generation method, cyclic shift values of a reference signal for a channel, output in a single frame, are calculated for respective slots constituting the single frame. The calculated cyclic shift values are stored. Base signal sequence phases of the reference signal for the channel, output in the single frame, are calculated for respective slots. The calculated base signal sequence phases are stored. A total phase of the reference signal is calculated based on the cyclic shift values and the base signal sequence phases previously stored for respective slots. A reference signal sequence is generated based on the calculated total phase.