Abstract:
The present invention provides a non-aqueous electrolyte secondary battery that can suppress a drop in a flash point of an electrolyte solution even if the non-aqueous electrolyte secondary battery is used for a long time. The non-aqueous electrolyte secondary battery includes: an electrode body having a structure in which a positive electrode including a positive-electrode active material and a negative electrode including a negative-electrode active material are stacked with a separator interposed therebetween; a non-aqueous electrolyte solution containing a flame retardant; and an outer casing accommodating the electrode body and the non-aqueous electrolyte solution. The non-aqueous electrolyte solution in the electrode body has a flame retardant concentration lower than a flame retardant concentration in the non-aqueous electrolyte solution between the electrode body and the outer casing.
Abstract:
The present invention provides a positive electrode for non-aqueous electrolyte secondary battery, having a novel overcharge protective function. The positive electrode for non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode active material layer including a plurality of positive electrode active material particles, wherein the positive electrode active material layer comprises: a carbonaceous coating film formed on a surface of each of the positive electrode active material particles; and 0% by weight or more and 20% by weight or less of a conductive auxiliary agent disposed between the plurality of positive electrode active material particles, and at least one of the carbonaceous coating film and the conductive auxiliary agent is graphitizable carbon.
Abstract:
A thermistor layer of the present invention is configured to be disposed in an electrical current path. The thermistor layer comprises a thermosensitive particle, a plurality of electro-conductive particles covering a surface of the thermosensitive particle, and a binder adhering the electro-conductive particles, the electro-conductive particles form an electro-conductive network, at least the surface of the thermosensitive particle is made of a thermoplastic resin, the thermoplastic resin softens at a temperature lower than a temperature at which the binder softens, and the thermistor layer is provided to become highly resistive due to softening and deformation of the thermoplastic resin.
Abstract:
A lithium ion secondary battery includes: a positive electrode having a positive electrode active material layer on a surface of a positive electrode collector; a negative electrode having a negative electrode active material layer on a surface of a negative electrode collector; and a nonaqueous electrolyte. The positive electrode, the negative electrode, and the nonaqueous electrolyte are accommodated in a battery case. The nonaqueous electrolyte contains γ-butyrolactone as a main component of a nonaqueous solvent. A BOB ion-derived coat is formed on the surface of the positive electrode active material layer. A VC-derived coat is formed on the surface of the negative electrode active material layer.
Abstract:
A method for producing a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the method comprises the steps of: placing an electrode body into an outer casing, the electrode body having a folded-separator structure or a wound structure in which a positive electrode including a positive-electrode active material and a negative electrode including a negative-electrode active material are stacked with a separator interposed therebetween; placing a non-aqueous electrolyte free of a flame retardant into the outer casing; charging the electrode body by applying a voltage between the positive electrode and the negative electrode placed in the outer casing; placing a flame retardant into the outer casing; and sealing the outer casing, wherein the step of charging is a step of charging the electrode body with the state in which the surface of the positive-electrode active material and the surface of the negative-electrode active material are in contact with the non-aqueous electrolyte substantially free of the flame retardant.