摘要:
It is an object of the invention to provide novel compositions and methods utilizing immunomodulating agents that can either stimulate or indirectly augment the immune system or in other cases have an immunosuppressive effect. TNFR25 agonists disclosed herein have an anti-inflammatory and healing effect. They can be used, among other things, to treat disease caused by asthma and chronic inflammation such as for example inflammatory bowel diseases including ulcerative colitis and Crohn's Disease. TNFR25 antagonists disclosed herein are capable of inhibiting CD8 T cell-mediated cellular immune responses and can for example, mitigate organ or tissue rejection following a tissue transplantation. TNFR25 agonists disclosed herein represent biological response modifiers that alter the interaction between the body's cellular immune defenses and cancer cells to boost, direct, or restore the body's ability to fight the cancer when given with tumor vaccines. TNFR25 specific immunotoxins disclosed herein are also capable of increasing the effectiveness of a chemotherapeutic regimen by depleting a cancer patient of naturally occurring immunosuppressive cells.
摘要:
The invention provides a method of modulating a T cell immune response by modulating DR3 function in the T cell, wherein the T cell response causes a symptom of inflammatory lung disease. The invention also provides a method of treating a reactive airway disease in an animal subject by administering to the subject an agent which modulates at least one functional activity of CD30. The invention additionally provides a method for treating an inflammatory lung disease by administering an agent that decreases the activity of DR3 or CD30, whereby IL-13 expression is decreased.
摘要:
The invention relates to the fields of medicine, immunology, and oncology. More specifically, the invention relates to methods and compositions for inducing an immune response against a tumor in an animal subject. The invention provides that a lung cancer cell or other tumor cells, genetically modified to express a nucleic acid encoding CD80 (B7.1) and a nucleic acid encoding an HLA antigen, and method for stimulating an immune response to a tumor with the tumor cell so genetically modified. The invention additionally provides a method of inhibiting a tumor, including a cancer such as lung cancer, by administering an allogeneic tumor cell, for example a cancer tumor cell such as a lung cancer tumor cell, genetically modified to express a nucleic acid encoding CD80 (B7.1) and a nucleic acid encoding an HLA antigen.
摘要:
The invention relates to the fields of medicine, immunology, and oncology. More specifically, the invention relates to methods and compositions for inducing an immune response against a tumor in an animal subject. The invention provides that a lung cancer cell or other tumor cells, genetically modified to express a nucleic acid encoding CD80 (B7.1) and a nucleic acid encoding an HLA antigen, and method for stimulating an immune response to a tumor with the tumor cell so genetically modified. The invention additionally provides a method of inhibiting a tumor, including a cancer such as lung cancer, by administering an allogeneic tumor cell, for example a cancer tumor cell such as a lung cancer tumor cell, genetically modified to express a nucleic acid encoding CD80 (B7.1) and a nucleic acid encoding an HLA antigen.
摘要:
The invention provides a method of modulating a T cell immune response by modulating DR3 function in the T cell, wherein the T cell response causes a symptom of inflammatory lung disease. The invention also provides a method of treating a reactive airway disease in an animal subject by administering to the subject an agent which modulates at least one functional activity of CD30. The invention additionally provides a method for treating an inflammatory lung disease by administering an agent that decreases the activity of DR3 or CD30, whereby IL-13 expression is decreased.
摘要:
The present invention relates to methods for purifying immunogenic, prophylactically and therapeutically effective complexes of modified heat shock proteins noncovalently associated with antigenic peptides of cancer or infected cells. The claimed methods comprise the constructing of a nucleotide sequence encoding a secretable modified heat shock protein, expressing the sequence in an appropriate host cell, recovering the immunogenic complexes from the cell culture and the cells, and purifying the immunogenic complexes by affinity chromatography. Large amounts of such immunogenic complexes can be obtained by large-scale culturing of host cells containing the genetic sequence. The complexes can be used as a vaccine to elicit specific immune responses against cancer or infected cells, and to treat or prevent cancer or infectious diseases.