Abstract:
A bar code reader 10 includes a housing 20 including one or more transparent windows H, V and defining a housing interior region. As a target object is swiped or presented in relation to the transparent windows an image of the target object is captured. Cameras C1-C6 have an image capture sensor array with a global shutter is positioned within the housing interior region for capturing an image of a bar code within a camera field of view. All the cameras produce images in a sequential manner during an image frame time period. An image processing system has a processor for decoding a bar code carried by the target object. The processing system responds to signals from a light sensor to terminate object illumination when an adequate image exposure has transpired.
Abstract:
A bar code reader 10 includes a housing 20 including one or more transparent windows H, V and defining a housing interior region. As a target object is swiped or presented in relation to the transparent windows an image of the target object is captured. Cameras C1-C6 have an image capture sensor array with a global shutter is positioned within the housing interior region for capturing an image of a bar code within a camera field of view. All the cameras produce images in a sequential manner during an image frame time period. An image processing system has a processor for decoding a bar code carried by the target object. The processing system responds to signals from a light sensor to terminate object illumination when an adequate image exposure has transpired.
Abstract:
A multicamera imaging-based bar code reader 10 for imaging a target bar code 30 on a target object 32 features: a housing 20 supporting a plurality of transparent windows H, V and defining an interior region, an imaging system including a plurality of camera assemblies C1-C3 coupled to an image processing system, each camera assembly of the plurality of camera assemblies being positioned within the housing interior. Each camera assembly includes a sensor array. Light reflecting fold mirrors split light from a given camera assembly into portions that are directed out of the housing to different fields of view. Light bounces from a target in a camera field of view back along said light path to the image capture sensor array.
Abstract:
A bar code reader 10 includes a housing 20 including one or more transparent windows H, V and defining a housing interior region. As a target object is swiped or presented in relation to the transparent windows an image of the target object is captured. Cameras C1-C6 have an image capture sensor array with a global shutter is positioned within the housing interior region for capturing an image of a bar code within a camera field of view. All the cameras produce images in a sequential manner during an image frame time period. An image processing system has a processor for decoding a bar code carried by the target object. The processing system responds to signals from a light sensor to terminate object illumination when an adequate image exposure has transpired.
Abstract:
A bar code reader 10 includes a housing 20 including one or more transparent windows H, V and defining a housing interior region. As a target object is swiped or presented in relation to the transparent windows an image of the target object is captured. Cameras C1-C6 have an image capture sensor array with a global shutter is positioned within the housing interior region for capturing an image of a bar code within a camera field of view. All the cameras produce images in a sequential manner during an image frame time period. An image processing system has a processor for decoding a bar code carried by the target object. The processing system responds to signals from a light sensor to terminate object illumination when an adequate image exposure has transpired.
Abstract:
An imager (12) is provided for imaging target objects (26) comprising an illumination source (22) for providing illumination (24) that is reflected (30) from a target object (26), an intensity of the illumination being a function of a magnitude of current provided to the illumination source (22) and photosensitive circuitry (36) located within the imager (12) for capturing an image reflected from the target object (26) to the imager (12) while the imager is activated during an exposure period. The imager (12) further comprises a selectively adjustable imaging mode (120) for selecting either of: the magnitude of current (130) provided to the illumination source (22) or exposure period (230) of the imager such that the other of the magnitude of current or exposure period of the imager is automatically adjusted (150, 240) as a result of the selection.
Abstract:
Molded imager optical packages are disclosed which are particularly adapted for use in miniaturized, linear sensor-based code reading engines. The package may include a one-dimensional solid state photo sensor with a small number of cells. A low F-number optical system may be integrally molded in the sensor packaging.
Abstract:
A method and apparatus for imaging targets with an imaging reader. The method includes: (1) capturing return light from a target over a field of view of the solid-state imager and generating image data corresponding to the target; (2) transmitting the image data from the solid-state imager to the host when the gate circuit is set to the transmitting mode; and (3) preventing the image data from transmitting to the host when the gate circuit is set to the blocking mode.
Abstract:
An ABS tone ring is made of a thermo-set plastic material transparent to electro-magnetic radiation. A plurality of discrete, spaced magnets or ferro-magnetic buttons is arrayed in a circle, embedded in the tone ring. The thermo-set plastic is heat tolerant and resistant to road salt and oxidation and protects the magnets or buttons from oxidation and corrosion.
Abstract:
A method and imaging apparatus is provided for scanning and decoding a target object. The imaging apparatus (10) comprises a scanning arrangement (12) comprising a sensor assembly (22) for capturing an image from a target object. The sensor assembly (22) includes a sensor array (27) located within the sensor assembly. A programmable microprocessor (13) is located within and coupled to the scanning arrangement (12) that operates an electronic shutter (29) for controlling the exposure time of pixels (33) located in the sensor array (27). The electronic shutter (29) includes first and second modes of exposure. An image test control system (31) associated with the scanning arrangement (12) for evaluating lighting conditions surrounding the imaging apparatus (10) and selecting an optimum mode for imaging based on the evaluation between the first mode of exposure and the second mode of exposure.