Abstract:
A surgical cutting instrument is disclosed for percutaneously debulking tissue through an access sheath commonly used in minimally invasive laparoscopic or endoscopic surgical procedures. The cutting instrument includes a inner rotary member tube having a cutting edge at the distal end thereof for cutting and slicing tissue. The outside surface of the rotary inner cutting member tube and outer sheath annularly close about the distal ends thereof for preventing perforation of the surgical tissue bag in which the tissue is contained. The inner cutting member tube includes a hollow passageway for suctioning and aspirating tissue and fluid through the tube and into a collection chamber or out through a vacuum or suction line attached thereto. Vacuum or suction control ports are included at the proximal end of the inner cutting member tube and stationary sheath for also controlling the amount of vacuum or suction applied to the tissue. The surgical cutting instrument includes a control handle for grasping by the physician. A collection chamber is connected to a coupler connected to the stationary sheath for collecting tissue therein. The inner cutting member tube extends through the collection chamber to a drive motor or to a remotely positioned rotary drive mechanism. A vacuum line is attached to the collection chamber for drawing tissue and fluid through the inner cutting member tube and into the collection chamber.
Abstract:
A rotational surgical instrument including a working head connected to a rotatable, pencil-like handle. The handle includes a casing with distal and proximal end caps, an elongated outer member extending into the casing, and a actuation link extending from the distal end cap through the casing and elongated member to the working head. An actuating mechanism is positioned distally from the distal end cap about the proximal portion of the elongated member for slidably actuating the working head between and open and closed positions. A compression spring is included in the passageway of the casing around the actuation link between the proximal end cap and the proximal end of the elongated member to return the working head to the nonactuated position. Keyed surfaces are included within the passageway of the casing and attached to the distal end of the casing and the proximal end of the elongated member for preventing rotation of the elongated member with respect to the casing and actuation link. A spring is also positioned between the distal end cap and the actuating mechanism for varying the combined tension of the two springs for operating the handle. The variable tension spring is varied by rotating a knob of the actuating mechanism which adjusts the distance from the distal end cap.
Abstract:
A percutaneously insertable, needle-sized retractor and system for grasping and retracting tissue in a cavity of a patient. The system comprises a needle-sized trocar sheath having an outside diameter in a range from 10 to 22 gauge, a pointed distal end stylet insertable into the trocar sheath, and a tissue-grasping retractor also insertable through the trocar sheath. The stylet is inserted through the trocar sheath with the pointed distal end extending therefrom. The trocar sheath and stylet are then inserted through a patient's skin and subtending tissue and organs into a desired cavity. When the trocar sheath is inserted, the stylet is removed and the tissue grasping retractor inserted through the sheath and into the cavity. A retaining cap at the proximal end of the sheath fixedly positions the retractor with respect to the trocar sheath while a retention flange positioned around the outside surface of the sheath fixedly positions the sheath with respect to the patient. Thus, the tissue grasping retractor and system grasps and retracts tissue during a minimally invasive procedure with minimal trauma to the patient.
Abstract:
A surgical cutting instrument is disclosed for percutaneously debulking tissue through an access sheath commonly used in minimally invasive laparoscopic or endoscopic surgical procedures. The cutting instrument includes a inner rotary member tube having a cutting edge at the distal end thereof for cutting and slicing tissue. The distal end of the cutting member tube extends from the distal end of a stationary sheath which prevents tissue from wrapping around the inner cutting member tube. The inner cutting member tube includes a hollow passageway for suctioning and aspirating tissue and fluid through the tube and into a collection chamber or out through a vacuum or suction line attached thereto. The instrument further includes an outer safety shield having a rounded distal end for preventing the puncture of a surgical tissue bag or from unintentionally cutting tissue by the attending physician. The outer shield has a channel across the distal end through the hollow passageway therein for feeding tissue into the cutting edge and controlling the vacuum applied to the tissue. Vacuum or suction control ports are included at the proximal end of the inner cutting member tube and stationary sheath for also controlling the amount of vacuum or suction applied to the tissue. The surgical cutting instrument includes a control handle for grasping by the physician. A removable collection chamber is connected to a coupler connected to the stationary sheath for collecting tissue therein. The inner cutting member tube extends through the collection chamber to a drive motor or to a remotely positioned rotary drive mechanism. A vacuum line is attached to the collection chamber for drawing tissue and fluid through the inner cutting member tube and into the collection chamber.
Abstract:
A rotational surgical instrument including a working head connected to a rotatable, pencil-like handle. The handle includes a casing with distal and proximal end caps, an elongated outer member extending into the casing, and a actuation link extending from the distal end cap through the casing and elongated member to the working head. An actuating mechanism is positioned distally from the distal end cap about the proximal portion of the elongated member for slidably actuating the working head between and open and closed positions. A compression spring is included in the passageway of the casing around the actuation link between the proximal end cap and the proximal end of the elongated member to return the working head to the nonactuated position. Keyed surfaces are included within the passageway of the casing and attached to the distal end of the casing and the proximal end of the elongated member for preventing rotation of the elongated member with respect to the casing and actuation link. A spring is also positioned between the distal end cap and the actuating mechanism for varying the combined tension of the two springs for operating the handle. The variable tension spring is varied by rotating a knob of the actuating mechanism which adjusts the distance from the distal end cap.
Abstract:
A surgical trocar access sheath having a laterally expandable retention mechanism for percutaneous insertion through a body cavity wall. The expandable retention mechanism is positioned about the distal end of the sheath for retaining the access sheath within the body cavity. The access sheath has an inner elongated member cannula and an outer elongated member tube having a slick surface for ready insertion through a puncture site. The laterally expandable retention mechanism includes a plurality of strips extending and formed longitudinally in the outer tube. The retention mechanism has an expanded state and a retracted state. In the expanded state, the longitudinal strips extend radially from the outer elongated member tube to engage the interior surface of the body cavity wall. The expandable retention mechanism is actuated by sliding an actuating mechanism hub attached to the distal end of the outer elongated member tube against another hub fixedly attached to the inner elongated member cannula. To insert or retract the access sheath through the cavity wall of a patient, the physician squeezes the actuating mechanism hub against the fixed hub to collapse the longitudinal strips against the surface of the inner elongated member cannula. Once inserted, the actuating mechanism is released to expand the retention mechanism.
Abstract:
A surgical obturator adapted to penetrate a body wall includes an elongate shaft having an axis which extends between a proximal end and a distal end. A bladeless tip, disposed at the distal end of the shaft has an outer surface which extends to a blunt point The outer surface has a pair of side sections separated by an intermediate section The side sections extend from the blunt point radially outwardly with progressive positions proximally along the axis. These side sections include a distal portion in proximity to the blunt point, and a proximal portion in proximity to the shaft. The distal portion of the side section is twisted radially with respect to the proximal portion of the side section. The outer surface in radial cross section has the general configuration of a geometric shape which rotates in a first direction about the axis with progressive proximal radial cross sections along the axis.
Abstract:
An electrosurgical tool can be used to fuse tissue. The electrosurgical tool can include a jaw assembly, an elongate shaft, and a handle assembly. Actuation of the handle assembly can actuate the jaw assembly. The elongate shaft can be rotatable without disrupting electrical connection to the jaw assembly. The electrosurgical tool can include a cutting blade to separate fused tissue. The electrosurgical tool can also include a jaw assembly configuration or an exterior cutting electrode to improve surgical access with the tool.
Abstract:
An electrosurgical tool can be used for tissue dissection. The tool can include several electrodes positioned on a jaw assembly. The electrodes can be selectively connected to a power source in a cutting arrangement or a coagulation arrangement. Switching from the cutting arrangement to the coagulation arrangement can be provided by opening and closing a handle to actuate the jaw assembly.
Abstract:
Devices, methods, and systems provide a surgical access device comprising an internal retractor device integrated with or coupled to a body wall or wound retractor. The wound retractor retracts an opening in a body wall into a body cavity, while the internal retractor permits a user to control the positions of internal structures within the body cavity, thereby permitting a user to define a surgical field. Embodiments of the internal retractor are adjustable.