Abstract:
Disclosed is a smart remote node optical network node including an optical layer monitoring unit configured to transmit a monitoring light signal to an optical network unit through an optical switch and receive a monitoring light signal reflected from the optical network unit, an infra recognition unit configured to recognize whether an optical connector is connected to an output port of a remote node and an identification number of the optical connector when the optical connector is connected thereto, and a control unit connected to the optical layer monitoring unit and the infra recognition unit and configured to control recognition and monitoring operations of the remote node according to a remote node application.
Abstract:
An indexing apparatus and method for search of security monitoring data are provided. The indexing apparatus includes a data collection unit and a data index generation unit. The data collection unit collects data, that is, a basis of search of monitoring information, from a database in which security monitoring data has been stored. The data index generation unit generates file structure-based data in which indices have assigned to multiple search elements of the data collected by the data collection unit.
Abstract:
Disclosed herein are an optical network unit and a method for controlling the unit. In a passive optical network system, an optical transceiver of the optical network unit performs a wavelength change of an optical signal according to a wavelength setting command transferred from a media access control (MAC) unit and monitors a wavelength change state and reports the monitored wavelength change state to the MAC unit. When the wavelength malfunction occurs, the MAC unit blocks an uplink optical transmission of the optical transceiver.
Abstract:
Provided is a method of saving power in a passive optical network (PON) system including an optical line terminal (OLT) and a plurality of optical network units (ONUs), the OLT including an optical transceiver to communicate with at least one ONU through an optical line, and a controller to control the optical transceiver to transmit an upstream bandwidth map to the ONU at a predetermined transmission interval, wherein the transmission interval is determined based on a desired upstream data service delay time.
Abstract:
An optical line terminal is provided which includes an upward band allocating unit configured to send an upward bandwidth allocation map to an optical network unit and to determine a sleep mode of the optical network unit according to whether a response message corresponding to the upward bandwidth allocation map is received; and an alarm unit configured to determine an upward bandwidth allocation map transfer operation as a normal operation according to an operation of the sleep mode.
Abstract:
An apparatus and method for monitoring an optical line is provided. The optical line monitoring apparatus may include a comparison unit to extract first identification information about an optical network terminal (ONT) from reflected data that is reflected and received from the optical line, and to compare the extracted first identification information to predetermined second identification information about the ONT, and a processor to analyze a state of the optical line using the reflected data when the first identification information is identical to the second identification information.
Abstract:
The inventive concept relates to an optical line terminal registering optical network terminals having overlapping serial numbers. The optical line terminal may include a memory storing serial number information of optical network terminals of which a registration is completed in a storage region; and a control part that if a serial number by a serial number request is received from optical network terminals, the received serial number is compared with the serial number information of the memory and if they overlap each other, a previously set preliminary identifier is allocated to the optical network terminal having an overlapping serial number.
Abstract:
Provided are a system and method for providing a microservice-based device control interface. The system for providing a microservice-based device control interface includes a Docker registry server in which resources required for providing a device control interface are located and a gateway which receives and installs resources and provides a device control interface using a Docker-based microservice structure.
Abstract:
Provided is an apparatus of recognizing optical connector connection including an IC tag connection unit configured to provide bus power and detect whether the optical connector is connected to an optical adapter, an IC tag configured to store an IC tag ID uniquely given to the optical connector, which is connected to a corresponding optical cable, and to receive the bus power to be driven for bus communication, and an IC tag ID obtaining unit configured to obtain the IC tag ID stored in the IC tag through the IC tag connection unit, when the optical connector is connected to the optical adapter.
Abstract:
An optical network system for controlling a passive optical network (PON) in which at least one symmetric optical subscriber terminal and at least one asymmetric optical subscriber terminal coexist is provided.