Abstract:
A base station configures beam identifiers for a plurality of transmission beams. The base station configures virtual beam identifiers for the plurality of transmission beams based on the maximum number of transmission beams from the plurality of transmission beams that may spatially overlap one another, and the beam identifiers. The base station allocates resources using the virtual beam identifiers.
Abstract:
The exemplary embodiment of the present invention provides a beam selecting apparatus of a fixed beam terminal, including: a delay time measuring unit which measures delay times of a plurality of signals received through a plurality of beams; a beam selecting unit which compares a threshold value selected based on the measured delay time and a signal strength of each of the plurality of signals to select a beam; and a switching type beam former which operates the plurality of beams in accordance with the selected beam.
Abstract:
There is provided a method for acquiring and modifying uplink and downlink synchronization, by which, if there is a possibility of ISI occurring due to incorrect downlink synchronization of a terminal with a base station, the terminal receives a ranging response from the base station, modifies incorrect downlink synchronization, and acquires uplink synchronization in accordance with modified downlink synchronization. The method for acquiring and modifying uplink and downlink synchronization efficiently prevents, in a cooperative communication network, discrepancy in signal transmission synchronization between the base stations, excessive attenuation of a transmitted signal, or a delay caused by a difference in reflection paths.
Abstract:
The polarization beamforming communication apparatus of a base station estimates an azimuth, elevation, and polarization of each of terminals using a reference signal of a terminal received through a plurality of dual polarization antennas, determines a stream to be transmitted based on the azimuth, elevation, and polarization of the terminal, and sends the stream to be transmitted to the terminal through a polarization-matched beam formed in accordance with each of the plurality of dual polarization antennas using the azimuth, elevation, and polarization of the terminal.
Abstract:
A base station of a wireless communication system determines an index of radio resource blocks to which a plurality of random access channels are allocated, and allocates the plurality of random access channels to locations of the determined index of the radio resource blocks such that the radio resource blocks of the plurality of random access channels have a symmetrical structure in available uplink radio resource blocks.
Abstract:
Disclosed is a data transmitter, including: a demultiplexer configured to demultiplex a data subcarrier, and a training sequence or a pilot subcarrier included in a signal which needs to be frequency-shifted among a plurality of signals; a frequency shift unit configured to frequency-shift the demultiplexed data subcarrier based on a predetermined frequency; a superposition unit configured to generate a polarization signal by superimposing the demultiplexed training sequence or pilot subcarrier, and the frequency-shifted data subcarrier; and a polarization antenna configured to transmit a signal which need not be frequency-shifted and the generated polarization signal among the plurality of signals.
Abstract:
A clustering wireless base station includes a group digital processor including a plurality of digital units (DU) and a plurality of remote radio frequency units (RRU) that are connected to the group digital processor through a transport network and that are installed in each service target area. In this case, each DU includes a decoder that decodes upward data that is received from the each DU, and each RRU includes an encoder that encodes downward data from the each DU.
Abstract:
The present invention relates to a base station device and a signal transmitting method thereof. The base station device according to the present invention includes a digital signal processing device configured to separate transmission data into a first data area and a second data area, to verify whether first data detected from the first data area is pre-transmitted data, to compress any one of the first data and second data detected from the second data area based on a result of the verifying, and to transmit the compressed data via an interface, and a radio signal processing device configured to combine the first data and the second data and wirelessly transmit the transmission data when the second data is received from the digital signal processing device in a state in which the first data is received via the interface connected to the digital signal processing device and stored.
Abstract:
The present invention relates to a data transmitting method using a bandwidth request channel and a user terminal and a base station conducting the same. The present invention provides a communication method by a user terminal which transmits data to a base station via a bandwidth request channel, including: generating a preamble for bandwidth request; determining whether a message for the bandwidth request is generated; generating a first signal value to be operated with the preamble when it is determined that the message is generated and generating a second signal value to be operated with the preamble when it is determined that the message is not generated; operating the preamble with the generated first signal value or second signal value; and transmitting a signal including the operated preamble to the base station, thereby reducing overhead occurring when the bandwidth request information is demodulated.
Abstract:
Disclosed is a base station that performs coordinated communication with a plurality of remote radio heads (RRHs), including: a communication unit receiving source signals from the plurality of remote radio heads; a measurement unit measuring signal intensities and delay times of the respective source signals; a selection unit selecting remote radio heads that will perform the coordinated communication among the plurality of remote radio heads based on the signal intensities and the delay times; and a demodulation unit demodulating source signals received from the selected remote radio heads.