Abstract:
A device for achieving multi-photon interference, said device comprising: at least two solid state photon emitters, each solid state photon emitter comprising nuclear and electron spin states coupled together, each solid state photon emitter being configured to produce photon emission comprising a photon emission peak, wherein the photon emission peaks from different solid state photon emitters have a first frequency difference between peak intensities, and wherein the electron spin states of each solid state photon emitter are resolvable; an excitation arrangement configured to individually address the at least two solid state photon emitters; a plurality of optical out coupling structures wherein each solid state photon emitter is provided with an associated optical out coupling structure; a tuning arrangement configured to reduce the first frequency difference between the peak intensities of the photon emission peaks from the at least two solid state photon emitters to a second frequency difference which is smaller than the first frequency difference; a photon interference arrangement configured to overlap photon emissions from the at least two solid state emitters after tuning; and a detector arrangement configured to detect photon emissions from the at least two solid state emitters after tuning and passing through the photon interference arrangement, wherein the detector arrangement is configured to resolve sufficiently small differences in photon detection times that tuned photon emissions from the at least two solid state emitters are quantum mechanically indistinguishable resulting in quantum interference between indistinguishable photon emissions from different solid state photon emitters.
Abstract:
A device for achieving multi-photon interference is provided based on nitrogen-vacancy defects in diamond material. Nitrogen-vacancy defects having a narrow band width and a similar emission frequency are identified within a high quality diamond material. The device has an excitation arrangement configured to individually address nitrogen-vacancy defects and optical outcoupling structures for increasing outcoupling of photons from each nitrogen-vacancy defect. A tuning arrangement is configured to tune the emission from each nitrogen-vacancy defect to reduce differences in frequency and the photons are overlapped. A detector is provided to detect the photon emissions. The detector is configured to resolve sufficiently small differences in photon detection times such that tuned photon emissions from the nitrogen-vacancy defects are quantum mechanically indistinguishable resulting in quantum interference between indistinguishable photon emissions from different nitrogen-vacancy defects.