摘要:
Expression of a recombinant manganese-dependent peroxidase in plants is described. Methods for the recovery of transgenic corn seeds that express high levels of functional manganese-dependent peroxidase are also provided. Manganese-dependent peroxidase vectors are engineered to contain sequences directing seed-preferred expression as well as sequences for cell wall-targeted localization.
摘要:
Increased expression of heterologous proteins in a plant is achieved by introducing the nucleotide sequence encoding the heterologous protein into a plant that has high oil seed content compared to low oil seed and/or is introduced into a plant having reduced alcohol soluble proteins in the endosperm. The nucleotide sequence may be introduced by direct transformation into the plant, or by direct transformation into another plant, and crossing with the high oil plant or plant have reduced levels of alcohol soluble protein in the endosperm. Further, the nucleotide sequences may be introduced into one or both of the high oil plant and the plant having reduced levels of alcohol soluble proteins, and the plants may be crossed to result in a progeny having even further increased expression levels of the heterologous protein.
摘要:
Expression of recombinant polysaccharide degrading enzymes in plants is described. In one embodiment, expression of the enzyme is preferentially directed to the seed of the plant. Expression may also be preferentially targeted to specific locations within the plant cell. Expression of cellulases in corn is shown. The result is the capacity to produce polysaccharide degrading enzymes in plants at commercially acceptable levels in a reliable manner. Methods of using same in production of ethanol is also described, including use of the plant-produced enzymes in the ethanol production process.
摘要:
Production of proteases in plants is set forth, whereby heterologous DNA encoding the protease is introduced into the plant and expression of the protein achieved. By such methods, expression is achieved in plants wherein the plant cell is not damaged, the protein can be recovered without contamination by other proteases, and can be expressed at levels such that commercial production of the enzyme is obtained. Expression levels can be at 0.1% of total soluble protein of the plant, or higher.
摘要:
Expression of recombinant polysaccharide degrading enzymes in plants is described. In one embodiment, expression of the enzyme is preferentially directed to the seed of the plant. Expression may also be preferentially targeted to specific locations within the plant cell. Expression of cellulases in corn is shown. The result is the capacity to produce polysaccharide degrading enzymes in plants at commercially acceptable levels in a reliable manner. Methods of using same in production of ethanol is also described, including use of the plant-produced enzymes in the ethanol production process.
摘要:
A method of targeted drug delivery and imaging using nonionic surfactant vesicles (niosomes) in combination with ultrasound. Niosomes have potential applications in targeted drug delivery and imaging because of their ability to encapsulate therapeutic agents and their enhanced uptake by physiological membranes. Ultrasound may be used to mediate delivery non-invasively by altering the niosome membrane structure. Niosomes composed of polyoxyethylene sorbitan monostearate (Tween 61), cholesterol, and dicetyl phosphate were synthesized via a thin film hydration technique and used for encapsulation studies. Carboxyfluorescein dye (CF) was used as a drug model to demonstrate delivery. The amount of dye in the niosomes, the concentration of the vesicles, and their mean particle size after each 5 minute incremental exposure to ultrasound was monitored. Dye concentration in niosome samples decreased while the population and size distribution of the niosome remained largely unchanged. Ultrasound is demonstrated to enhance the rate of dye diffusion across the niosome membrane non-destructively.
摘要:
A method of targeted drug delivery and imaging using nonionic surfactant vesicles (niosomes) in combination with ultrasound. Niosomes have potential applications in targeted drug delivery and imaging because of their ability to encapsulate therapeutic agents and their enhanced uptake by physiological membranes. Ultrasound may be used to mediate delivery non-invasively by altering the niosome membrane structure. Niosomes composed of polyoxyethylene sorbitan monostearate (Tween 61), cholesterol, and dicetyl phosphate were synthesized via a thin film hydration technique and used for encapsulation studies. Carboxyfluorescein dye (CF) was used as a drug model to demonstrate delivery. The amount of dye in the niosomes, the concentration of the vesicles, and their mean particle size after each 5 minute incremental exposure to ultrasound was monitored. Dye concentration in niosome samples decreased while the population and size distribution of the niosome remained largely unchanged. Ultrasound is demonstrated to enhance the rate of dye diffusion across the niosome membrane non-destructively.
摘要:
Production of proteases in plants is set forth, whereby heterologous DNA encoding the protease is introduced into the plant and expression of the protein achieved. By such methods, expression is achieved in plants wherein the plant cell is not damaged, the protein can be recovered without contamination by other proteases, and can be expressed at levels such that commercial production of the enzyme is obtained. Expression levels can be at 0.1% of total soluble protein of the plant, or higher.
摘要:
An immunoniosmes for targeted delivery of therapeutic agents to specific tissues in a host and methods of synthesis of those niosomes. An antibody molecule having specificity for a target antigen, such as a cell surface marker or other marker differentially expressed on a target cell, is covalently coupled to a functionalized membrane constituent. In a particular embodiment the functionalized membrane constituent is polyoxyethylene sorbitan monostearate functionalized with cyanuric chloride. The niosomes of this invention thus provide a composition that enhances internalization or retention of the bioactive agent of the niosome into the cytoplasm of the cells of the target tissue by providing a high degree of target specificity. Furthermore, the membrane vesicle enhances the life of the therapeutic agent by preventing its degradation in the extracellular environment, while exhibiting lower toxicity than can occur with some liposomes. The niosomes of the present invention are thus particularly useful as vehicles for the delivery of therapeutics to specific target cells.
摘要:
A method for commercial production of avidin entails heterologous expression of the protein in plants, in native conformation, at an expression level such that avidin represents at least 0.1% of total extracted protein. A genetic map of the integration locus allows for the identification of the avidin-expressing plant. Genetic loci on a plant chromosome are revealed that support high levels of avidin expression and that can be used as a site of integration for high level expression of other genes of interest.