Abstract:
Described embodiments include a system, method, and apparatus. The system includes an antenna comprising a sub-Nyquist holographic aperture configured to define selectable arbitrary complex radiofrequency electromagnetic fields on a surface of the antenna. A mapping engine models an environment within a space radiateable by the antenna. The environment includes a target device and a human being. An optimization circuit selects responsive to the model of the environment a power transmission regime. The power transmission regime includes radiation pattern shaped to wirelessly transfer electromagnetic power from the antenna to the target device without exceeding a radiation exposure limit for humans. A gain definition circuit selects a complex radiofrequency electromagnetic field implementing the selected power transmission regime from the at least two selectable arbitrary complex radiofrequency electromagnetic fields. An antenna controller defines the selected arbitrary complex radiofrequency electromagnetic field in the sub-Nyquist holographic aperture.
Abstract:
Described embodiments include a system, method, and apparatus. A system includes an antenna comprising a sub-Nyquist holographic aperture configured to define selectable arbitrary complex radiofrequency electromagnetic fields on a surface of the antenna. A path analysis engine tests power transmission pathways from the antenna to a target device located in an environment within a space radiateable by the antenna. The environment includes a human being. An optimization circuit selects responsive to the tested power transmission pathways a power transmission regime. The regime includes an electromagnetic radiation pattern shaped to transfer radiofrequency electromagnetic power from the antenna to the target device without exceeding a radiation exposure limit for humans. A gain definition circuit selects a complex radiofrequency electromagnetic field implementing the selected power transmission regime from the at least two selectable, complex radiofrequency electromagnetic fields. An antenna controller defines the selected arbitrary complex radiofrequency electromagnetic field in the sub-Nyquist holographic aperture.
Abstract:
Described embodiments include an antenna, method, and an apparatus. The antenna includes a sub-Nyquist complex-holographic aperture configured to define at least two selectable, arbitrary complex radiofrequency electromagnetic fields on a surface with tangential wavenumbers up to 2π over the aperture element spacing (k_apt=2π/a).
Abstract:
Described embodiments include an antenna, method, and an apparatus. The antenna includes a sub-Nyquist holographic aperture configured to define at least two selectable, arbitrary complex radiofrequency electromagnetic fields on a surface with tangential wavenumbers up to the free-space wavenumber (k0). In an embodiment, the antenna is configured to beam radiofrequency electromagnetic power. In an embodiment, the antenna is configured to transfer radiofrequency electromagnetic power.