Abstract:
The present disclosure provides system and methods for optimizing the tuning of impedance elements associate with sub-wavelength antenna elements to attain target radiation and/or field patterns. Both static and variable (tunable) antenna systems may be manufactured. Static embodiments may be entirely passive in some embodiments. A scattering matrix (S-Matrix) of field amplitudes for each of a plurality of modeled lumped ports, N, may be determined that includes a plurality of lumped antenna ports, Na, with impedance values corresponding to the impedance values of associated impedance elements and at least one modeled external port, Ne, located external to the antenna system at a specified radius vector. Impedance values may be identified through an optimization process, and the impedance elements may be tuned (dynamically or statically) to attain a specific target radiation pattern.
Abstract:
A determined object wave can be approximately formed by applying a modulation pattern to metamaterial elements receiving RF energy from a feed network. For example, a desired object wave at a surface of an antenna is selected to be propagated into a far-field pattern. A computing system can compute an approximation of the object wave by calculating a modulation pattern to apply to metamaterial elements receiving RF energy from a feed network. The approximation can be due to a grid size of the metamaterial elements. Once the modulation pattern is determined, it can be applied to the metamaterial elements and the RF energy can be provided in the feed network, causing emission of the approximated object wave from the antenna.
Abstract:
Described embodiments include a system, method, and apparatus. The system includes an antenna comprising a sub-Nyquist holographic aperture configured to define selectable arbitrary complex radiofrequency electromagnetic fields on a surface of the antenna. A mapping engine models an environment within a space radiateable by the antenna. The environment includes a target device and a human being. An optimization circuit selects responsive to the model of the environment a power transmission regime. The power transmission regime includes radiation pattern shaped to wirelessly transfer electromagnetic power from the antenna to the target device without exceeding a radiation exposure limit for humans. A gain definition circuit selects a complex radiofrequency electromagnetic field implementing the selected power transmission regime from the at least two selectable arbitrary complex radiofrequency electromagnetic fields. An antenna controller defines the selected arbitrary complex radiofrequency electromagnetic field in the sub-Nyquist holographic aperture.
Abstract:
Described embodiments include a system, method, and apparatus. A system includes an antenna comprising a sub-Nyquist holographic aperture configured to define selectable arbitrary complex radiofrequency electromagnetic fields on a surface of the antenna. A path analysis engine tests power transmission pathways from the antenna to a target device located in an environment within a space radiateable by the antenna. The environment includes a human being. An optimization circuit selects responsive to the tested power transmission pathways a power transmission regime. The regime includes an electromagnetic radiation pattern shaped to transfer radiofrequency electromagnetic power from the antenna to the target device without exceeding a radiation exposure limit for humans. A gain definition circuit selects a complex radiofrequency electromagnetic field implementing the selected power transmission regime from the at least two selectable, complex radiofrequency electromagnetic fields. An antenna controller defines the selected arbitrary complex radiofrequency electromagnetic field in the sub-Nyquist holographic aperture.
Abstract:
Disclosed are antenna systems, wireless antenna controllers, and related methods. An antenna system includes a configured to receive an electromagnetic (EM) signal and propagate the EM signal as an EM reference wave. The antenna system also includes a tunable EM scattering elements, and a wireless controller. A wireless antenna controller includes an EM emitter configured to emit EM radiation to EM filters. The EM filters are configured to pass different sub-ranges of a frequency range of the EM radiation to the tunable EM scattering elements. A method includes wirelessly controlling the tunable EM scattering elements to deliver a different information streams to different far-end locations. A method includes controlling the EM emitter to modulate frequency content of the EM radiation to cause the tunable EM scattering elements to operate collectively according to different modulation patterns.
Abstract:
A determined object wave can be approximately formed by applying a modulation pattern to metamaterial elements receiving RF energy from a feed network. For example, a desired object wave at a surface of an antenna is selected to be propagated into a far-field pattern. A computing system can compute an approximation of the object wave by calculating a modulation pattern to apply to metamaterial elements receiving RF energy from a feed network. The approximation can be due to a grid size of the metamaterial elements. Once the modulation pattern is determined, it can be applied to the metamaterial elements and the RF energy can be provided in the feed network, causing emission of the approximated object wave from the antenna.
Abstract:
Described embodiments include an antenna and a method. In an embodiment, the antenna includes a holographic aperture having a surface including a plurality of individual electromagnetic wave scattering elements distributed thereon with a periodic inter-element spacing equal to or less than one-half of a free space wavelength of an operating frequency of the antenna. The aperture is configured to define at least two selectable complex radiofrequency electromagnetic fields on the surface with tangential wavenumbers up to 2π over the aperture element spacing (k_apt=2π/a). In an embodiment, the holographic aperture includes an amplitude and phase modulation holographic aperture. In an embodiment, each electromagnetic wave scattering element has a respective electronically controllable electromagnetic response to an incident radiofrequency electromagnetic wave, and the plurality of individual electromagnetic wave scattering elements are electronically controllable in combination to define the at least two selectable complex radiofrequency electromagnetic fields on the surface.
Abstract:
Disclosed are antenna systems, wireless antenna controllers, and related methods. An antenna system includes a configured to receive an electromagnetic (EM) signal and propagate the EM signal as an EM reference wave. The antenna system also includes a tunable EM scattering elements, and a wireless controller. A wireless antenna controller includes an EM emitter configured to emit EM radiation to EM filters. The EM filters are configured to pass different sub-ranges of a frequency range of the EM radiation to the tunable EM scattering elements. A method includes wirelessly controlling the tunable EM scattering elements to deliver a different information streams to different far-end locations. A method includes controlling the EM emitter to modulate frequency content of the EM radiation to cause the tunable EM scattering elements to operate collectively according to different modulation patterns.
Abstract:
The present disclosure provides a system and methods for mitigating, or reducing, the intermodulation of an adaptive antenna array's radiating elements. A tunable element may be used with a bias component to increase linearity of the system. These tunable elements may modify a radiating element's capacitance or damping rate. Adjusting the shape of the radiating element or using switches may also modify the resonance strength. Variable couplers may further be added to a system to reduce intermodulation. An adaptive antenna array using the techniques described herein may have all or some of the elements co-located.
Abstract:
The present disclosure provides system and methods for optimizing the tuning of impedance elements associate with sub-wavelength antenna elements to attain target radiation and/or field patterns. A scattering matrix (S-Matrix) of field amplitudes for each of a plurality of modeled lumped ports, N, may be determined that includes a plurality of lumped antenna ports, Na, with impedance values corresponding to the impedance values of associated impedance elements and at least one modeled external port, Ne, located external to the antenna system at a specified radius vector. Impedance values may be identified through an optimization process, and the impedance elements may be tuned (dynamically or statically) to attain a specific target radiation pattern.