Abstract:
Described embodiments include an antenna and a method. In an embodiment, the antenna includes a holographic aperture having a surface including a plurality of individual electromagnetic wave scattering elements distributed thereon with a periodic inter-element spacing equal to or less than one-half of a free space wavelength of an operating frequency of the antenna. The aperture is configured to define at least two selectable complex radiofrequency electromagnetic fields on the surface with tangential wavenumbers up to 2π over the aperture element spacing (k_apt=2π/a). In an embodiment, the holographic aperture includes an amplitude and phase modulation holographic aperture. In an embodiment, each electromagnetic wave scattering element has a respective electronically controllable electromagnetic response to an incident radiofrequency electromagnetic wave, and the plurality of individual electromagnetic wave scattering elements are electronically controllable in combination to define the at least two selectable complex radiofrequency electromagnetic fields on the surface.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an input electromagnetic field pattern from a first mode to a second mode to attain a target electromagnetic field pattern (near or far) that is different from the input electromagnetic field pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used in conjunction with an electromagnetic radiation device with a known output field pattern to attain a target field pattern. A voxel-based discretization of the distribution of dielectric constants can be used to generate the mode converting structure and/or to facilitate the optimization algorithms. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
An array of scattering and/or reflector antennas are configured to produce a series of beam patterns, where in some embodiments the scattering antenna and/or the reflector antenna includes complementary metamaterial elements. In some embodiments circuitry may be configured to set a series of conditions corresponding to the array to produce the series of beam patterns, and to produce an image of an object that is illuminated by the series of beam patterns.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
An array of scattering and/or reflector antennas are configured to produce a series of beam patterns, where in some embodiments the scattering antenna and/or the reflector antenna includes complementary metamaterial elements. In some embodiments control circuitry is operably connected to the array to produce an image of an object in the beam pattern.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
A surface scattering reflector antenna includes a plurality of adjustable scattering elements and is configured to produce a reflected beam pattern according to the configuration of the adjustable scattering elements.