摘要:
An improved cyclone system for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes with reduced coke formation in disengager vessels, without favoring release of the disengaged catalyst into cyclones in subsequent stages, said system comprising legless cyclones 42 fitted with external collector pipes 43, is described.The collector pipes 43 optimize the purge of gases coming from the disengager vessel 49, reducing the time the hydrocarbons remain inside said disengager vessel 49, thus preventing overcracking and subsequent coke formation. Positioning of the external collector pipes 43 prevents release of the disengaged catalyst into cyclones in subsequent stages.The present invention also relates to a process and device for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes, reducing coke formation in disengager vessels and minimizing the release of catalyst into consecutive stages, said process and device being part of the system of the present invention.
摘要:
An improved cyclone system for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes with reduced coke formation in disengager vessels, without favoring release of the disengaged catalyst into cyclones in subsequent stages, said system comprising legless cyclones 42 fitted with external collector pipes 43, is described. The collector pipes 43 optimize the purge of gases coming from the disengager vessel 49, reducing the time the hydrocarbons remain inside the disengager vessel 49, thus preventing overcracking and subsequent coke formation. Positioning of the external collector pipes 43 prevents release of the disengaged catalyst into cyclones in subsequent stages. The present invention also relates to a process and device for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes, reducing coke formation in disengager vessels and minimizing the release of catalyst into consecutive stages, said process and device being part of the system of the present invention.
摘要:
An apparatus for downflow fluid catalytic cracking is described, which comprises a regenerated catalyst riser carrying regenerated catalyst and a carrying fluid, those being directed through a crossover section to a distributor that will centrifuge gas and separate catalyst from carrying fluid, the catalyst being directed to a downflow reactor through a distributing basket provided with perforations. The upper part of the reactor is provided with feed injectors, which atomize the feed so that feed vaporization and feed and catalyst admixture is optimized. After the cracking reaction in downflow reactor, reaction products are separated and spent catalyst is directed to stripping and regeneration sections. The FCC process carried out in the apparatus is also described.
摘要:
This invention relates to a device for cooling and distributing mixed charges on fixed catalyst beds for use in the cooling zone of descending flow reactors which comprises a flat tray fitted with collector and distributor tubes for liquid superimposed upon and connected to another flat tray of similar design to the upper tray. The device, which is of smaller size in comparison with other commercially available devices, is extremely simple to install industrially and compact, and has as its main characteristic the efficiency with which it promotes reduction of the temperature of the reaction medium when it receives the cooling fluid within the catalytic reactor.
摘要:
This invention relates to a device for cooling and distributing mixed charges on fixed catalyst beds for use in the cooling zone of descending flow reactors which comprises a flat tray fitted with collector and distributor tubes for liquid superimposed upon and connected to another flat tray of similar design to the upper tray. The device, which is of smaller size in comparison with other commercially available devices, is extremely simple to install industrially and compact, and has as its main characteristic the efficiency with which it promotes reduction of the temperature of the reaction medium when it receives the cooling fluid within the catalytic reactor.