摘要:
A method is provided for dynamically allocating capacity to uplinks and downlinks in a communication network. In the method, base stations of the communication network are apportioned into groups. Each of the base stations communicates over an uplink and a downlink with communication devices. For each of the groups, a first indication of utilization of the uplink for each of the base stations of the group is received. Also received is a second indication of utilization of the downlink for each of the base stations of the group. A capacity allocation between the uplinks and the downlinks of the base stations of the group is determined based upon the first and second indications. The capacity allocation is then employed for each of the base stations of the group.
摘要:
A method of scheduling air-interface resources is disclosed. A throughput indicator associated with a wireless device is received. A modulation and coding scheme indicator is received. The modulation and coding scheme indicator being associated with a modulation and coding scheme recently used by the wireless device. Based on the modulation and coding scheme indicator, a token bucket size for a token bucket is selected. Based on the throughput indicator, a token rate for the token bucket is received. An air-interface resource is allocated to the wireless device based on the token bucket.
摘要:
A throughput of an air interface is recorded during a plurality of intervals to produce a set of recorded throughputs. A slot utilization is also recorded during each of the plurality of intervals to produce a set of recorded slot utilizations. A slot is an allocation of time and frequency. A linear regression on the data points of the set of recorded throughputs and the set of recorded slot utilizations is performed to produce a regression line of throughput versus slot utilization. An indicator of air interface quality is calculated based on the slope of the regression line.
摘要:
A wireless device is communicated with using a first throughput. A predicted location for the wireless device is determined. Based on the predicted location, a predicted maximum throughput at the predicted location is determined. Based on the predicted maximum throughput, a second throughput is determined. The wireless device is communicated with using the second throughput.
摘要:
A method of selecting a set of download data providers in a wireless network is disclosed. A request to download a data file from a wireless device is received. A set of potential providers that can provide one or more parts of the data file is determined. The set of potential providers is ranked based on a plurality of indicators that correspond to each of the set of potential provider. The plurality of indicators are each based on one or more wireless network operating conditions. The set of download data providers are selected based on the ranking of the set of potential providers. The data file is transferred to the wireless device by transferring one or more parts of the data file from each of the set of download data providers to the wireless device.
摘要:
A method of operating a communication system is disclosed. A location associated with a first wireless device is received. For a first frequency band, a first stored signal quality indicator associated with the location is received. For a second frequency band, a second stored signal quality indicator associated with the location is received. Based on the first stored signal quality indicator and the second stored signal quality indicator, the first frequency band is selected.
摘要:
What is claimed is a method of transferring overhead information in a wireless communication system, where the overhead information is encoded with a first modulation scheme, and where the overhead information is wirelessly transferred to a plurality of wireless communication devices in communication with the wireless communication system. The method includes receiving signal quality information from each of the plurality of wireless communication devices, processing the signal quality information to determine a second modulation scheme for the overhead information, where the second modulation scheme is determined to allow the overhead information to be decoded by each of the plurality of wireless communication devices, and the second modulation scheme is of a higher order of modulation than the first modulation scheme. The method also includes transferring an indicator of the second modulation scheme to the plurality of wireless communication devices, and transferring the overhead information to the plurality of wireless communication devices encoded with the second modulation scheme.
摘要:
First and second indicators of a first available amount of an air-interface resources associated with a first and second channel, respectively, is received. A request for an allocation of an amount of the air-interface resource is received. Based on the request for the allocation, first and second ranking values associated with the first and second channels, respectively are determined. The first and second ranking values are selected such that the efficient allocations receive higher ranks. Based on the first ranking value and the second ranking value, the first frequency band is selected to provide the allocation of the amount of the air-interface resource.
摘要:
First and second indicators of a first available amount of an air-interface resources associated with a first and second channel, respectively, is received. A request for an allocation of an amount of the air-interface resource is received. Based on the request for the allocation, first and second ranking values associated with the first and second channels, respectively are determined. The first and second ranking values are selected such that the efficient allocations receive higher ranks. Based on the first ranking value and the second ranking value, the first frequency band is selected to provide the allocation of the amount of the air-interface resource.
摘要:
A wireless device is communicated with using a first throughput. A predicted location for the wireless device is determined. Based on the predicted location, a predicted maximum throughput at the predicted location is determined. Based on the predicted maximum throughput, a second throughput is determined. The wireless device is communicated with using the second throughput.