-
公开(公告)号:US12000279B2
公开(公告)日:2024-06-04
申请号:US16947764
申请日:2020-08-14
Inventor: Olabode Ijasan , Darren M. McLendon
IPC: G01N24/08 , E21B7/04 , E21B49/02 , E21B49/08 , G01N15/08 , G01N33/24 , G01R33/50 , G01V3/32 , G01V3/38
CPC classification number: E21B49/088 , E21B7/046 , E21B49/02 , E21B49/0875 , G01N15/088 , G01N24/081 , G01N24/082 , G01N33/241 , G01R33/50 , G01V3/32 , G01V3/38 , G01N2015/0846
Abstract: A method for deriving at least one pore or fluid relaxation parameter and endpoint selected from the group consisting of a longitudinal T1 pore surface relaxivity constant (ρ1), a transverse T2 pore surface relaxivity constant (ρ2), a pore surface-to-volume ratio (A/V), an equivalent pore-throat radius (req), and a bulk fluid relaxation time (TB) comprising: identifying modes in NMR T1-T2 data; assigning the modes to a poro-fluid class; clustering the modes based on poro-fluid class; estimating TB based on an asymptote fit of the clusters using T1 and T2 relaxation mechanisms in a bulk fluid relaxation-dominated limit; estimating ρ2/ρ1 based on an asymptote fit of the clusters using T1 and T2 relaxation mechanisms in a surface relaxation-dominated limit; fitting the T1 and T2 relaxation mechanisms to the clusters using the estimated TB; and deriving the pore or fluid relaxation parameter and endpoint for the poro-fluid classes from the fit.
-
公开(公告)号:US11852013B2
公开(公告)日:2023-12-26
申请号:US16947762
申请日:2020-08-14
Inventor: Olabode Ijasan , Darren M. McLendon
IPC: E21B49/08 , E21B49/02 , G01N24/08 , G01V3/32 , G01V3/38 , E21B7/04 , G01N33/24 , G01R33/50 , G01N15/08
CPC classification number: E21B49/088 , E21B7/046 , E21B49/02 , E21B49/0875 , G01N15/088 , G01N24/081 , G01N24/082 , G01N33/241 , G01R33/50 , G01V3/32 , G01V3/38 , G01N2015/0846
Abstract: A method for partitioning NMR T1-T2 data may comprise: identifying modes in NMR T1-T2 data from a plurality of samples with a multimodal deconvolution or decomposition with regularized nonlinear inversion; deriving a modal properties vector comprising modal properties for each of the modes; performing a cluster analysis of the modes to identify clusters; assigning a poro-fluid class to the clusters based on one or more of the modal properties of the modes in each of the clusters; and deriving partitioned representations for the clusters based on the cluster analysis.
-