摘要:
A system includes at least one optical fiber having at least one FBG and a detection system. The optical fiber is configured to be coupled to a structure in at least one location. The location at which the optical fiber is to be coupled to the structure is different from a location at which the FBG is disposed. The detection system includes a light source configured to inject light into the optical fiber, a photodetector configured to detect a shift in a wavelength spectrum of light reflected by the FBG as a result of a time-varying strain induced at the at least one FBG, and a processor configured to detect a shear-horizontal guided stress wave propagating in said structure based on the shift in the wavelength spectrum detected by the photodetector induced by a longitudinal-type guided stress wave that is propagated along the optical fiber.
摘要:
A system for defect detection in plate like structures is disclosed. The system comprises a plurality of transducers configured to be coupled to a periphery of complex-plate structure. A controller is electrically coupled to the plurality of transducers. The controller includes a machine readable storage medium and a processor in signal communication with the machine readable storage medium. The processor is configured to generate a plurality of guided wave signals using a first set of the plurality of transducers, receive the plurality of guided wave signals at a second set of the plurality of transducers, and generate tomographic pseudo-image of structural changes of the complex-plate structure based on the plurality of guided wave signals received at the second set of the plurality of transducers.
摘要:
An ultrasonic guided wave system for defect detection in a plate-like structure, includes at least one first circumferentially-polarized piezoelectric d15 shear ring element configured to be coupled to a structure. The controller includes a machine readable storage medium and a processor in signal communication with the machine readable storage medium. The processor is configured to cause a pulse generator to pulse the at least first circumferentially-polarized piezoelectric d15 shear ring element such that shear horizontal-type guided wave energy is transmitted in all directions in the plate-like structure, process at least one guided wave signal to identify the presence and location of at least one possible defect in the plate-like structure, and store the guided wave signal and defect detection data in the machine readable storage medium.
摘要:
A method includes calculating, using a processor, an impedance or forward and reflected power coefficients of a phased system including a plurality of actuators disposed on a structure; and activating the plurality of actuators disposed on the structure to produce shear stress via ultrasonic continuous wave activation to at least one of delaminate or weaken an adhesion strength of a contamination on the structure.
摘要:
A system for detecting ice accretion includes a probe body, at least one magnetostrictive guided wave sensor for generating and receiving shear horizontal-type guided waves supported by said probe body, and a controller. The magnetostrictive guided wave sensor includes a ferromagnetic strip, at least one sensor coil disposed adjacent to said ferromagnetic strip, and at least one biasing magnet configured to induce a biasing magnetic field in said ferromagnetic strip. The controller includes a processor in signal communication with the at least one magnetostrictive guided wave sensor. The processor configured to cause the at least one magnetostrictive guided wave sensor to generate guided waves in the body, extract at least one signal feature from a guided wave signal received by the at least one magnetostrictive guided wave sensor, and determine at least one characteristic of ice accreted on an outer surface of said probe body.
摘要:
A system for non-destructive inspection of a structure includes a magnetostrictive pulser coil and a ferromagnetic strip. The ferromagnetic strip is coupled to the structure adjacent to the pulser coil. A scanner receiver probe is located adjacent to the ferromagnetic strip. The probe includes a probe body, a position encoder, and a magnetostrictive partial loading receiver coil. A magnet applies a biasing magnetic field to the ferromagnetic strip. A pulser system generates a time-varying current in the pulser coil to induce a time-varying magnetization in the ferromagnetic strip to generate guided wave energy in the structure. The probe detects reflected guided wave energy as the probe is moved around the circumference of the structure. A processor controls the pulser system, records guided wave reflections, and process the guided wave and probe position data to generate a one-dimensional image or a two-dimensional image of anomalies in said structure.
摘要:
A method for ultrasonic guided wave defect detection in a structure is disclosed. The method includes driving a plurality of transducers to cause guided waves to be transmitted in the structure in a predetermined direction or focused at a predetermined focal point, receiving at least one reflected guided wave signal, and generating image data of the structure based on the at least one reflected guided wave signal. Processed image data are generated by performing at least one of baseline image subtraction or image suppression on the image data, and a location of at least one possible defect in the structure is identified based on the processed image data.
摘要:
An inspection system includes a magnetostrictive scanner probe, a ferromagnetic strip, at least one magnet, and a processor. The magnetostrictive scanner probe includes a probe body for supporting at least one flexible sensor coil and a position encoder. The ferromagnetic strip is configured to be coupled to a structure, and the at least one magnet is configured to apply a biasing magnetization to the ferromagnetic strip. The processor is configured to cause a time-varying current to be generated in the at least one flexible sensor coil to induce a time-varying magnetization in said ferromagnetic strip perpendicular to said biasing magnetization to generate shear horizontal-type guided wave energy into said structure, and process reflected shear horizontal-type guided wave energy received by the at least one flexible sensor coil as the probe is moved relative to said structure to generate at least one two-dimensional image of a region of said structure.
摘要:
Non-destructive inspection systems (10) and methods for inspecting structural flaws that may be in a structure (15) based on guided wave thermography. The method may include sweeping a frequency-phase space to maximize ultrasonic energy distribution across the structure while minimizing input energy, e.g., via a plurality of actuators. The system may include transducer elements (12, 14, 16, 17) configured to predominantly generate shear horizontal-type guided waves in the structure to maximize thermal response from any flaws.
摘要:
An inspection system includes a magnetostrictive scanner probe, a ferromagnetic strip, at least one magnet, and a processor. The magnetostrictive scanner probe includes a probe body for supporting at least one flexible sensor coil and a position encoder. The ferromagnetic strip is configured to be coupled to a structure, and the at least one magnet is configured to apply a biasing magnetization to the ferromagnetic strip. The processor is configured to cause a time-varying current to be generated in the at least one flexible sensor coil to induce a time-varying magnetization in said ferromagnetic strip perpendicular to said biasing magnetization to generate shear horizontal-type guided wave energy into said structure, and process reflected shear horizontal-type guided wave energy received by the at least one flexible sensor coil as the probe is moved relative to said structure to generate at least one two-dimensional image of a region of said structure.