Abstract:
The present disclosure provides a method comprising determining an ore map for a heap to identify a location of a recoverable metal value in the heap, delivering a leaching solution from a leaching solution source to a leaching solution regulating system, regulating at least one of a pressure, a mass flow rate, or a volumetric flow rate of the leaching solution to achieve a first target operational condition, wherein the first target operational condition is selected to optimize a set of operational parameters to maximize recovery of the recoverable metal value, delivering the leaching solution at the first target operational condition from the leaching solution regulating system to a subsurface leaching distribution system, and delivering the leaching solution at the first target operational condition from the subsurface leaching distribution system to the location of the recoverable metal value under a surface of the heap to leach and recover at least one metal value.
Abstract:
The present disclosure provides a method comprising determining an ore map for a heap to identify a location of a recoverable metal-bearing material in the heap, wherein the metal-bearing material comprises iron and at least one other metal value, delivering a leaching solution from a leaching solution source to a leaching solution regulating system, wherein the leaching solution comprises an effective amount of citric acid and hydrogen peroxide, regulating at least one of a pressure, a mass flow rate, or a volumetric flow rate of the leaching solution to achieve a target operational condition, wherein the target operational condition is selected to optimize a set of operational parameters to maximize recovery of the at least one other metal value, delivering the leaching solution at the target operational condition from the leaching solution regulating system to the subsurface leaching distribution system, and delivering the leaching solution at the target operational condition from the subsurface leaching distribution system to the location of the recoverable metal-bearing material under a surface of the heap to leach and recover the at least one other metal value.
Abstract:
The present invention relates to an anode assembly for use in an electrolytic cell for recovery of metal. The assembly includes a hanger bar, a first perimeter bar, a second perimeter bar, optionally one or more center conductor bars, a base bar, a first tab coupled to the first perimeter bar and/or the base bar, and a second tab coupled to the second perimeter bar and/or the base bar. The assembly may also include insulating separators coupled to the tabs and/or insulators coupled to an active area of the anode assembly. A system includes the anode assembly, a cathode assembly, and a tank.
Abstract:
The present invention relates to an anode assembly for use in an electrolytic cell for recovery of metal. The assembly includes a hanger bar, a first perimeter bar, a second perimeter bar, optionally one or more center conductor bars, a base bar, a first tab coupled to the first perimeter bar and/or the base bar, and a second tab coupled to the second perimeter bar and/or the base bar. The assembly may also include insulating separators coupled to the tabs and/or insulators coupled to an active area of the anode assembly. A system includes the anode assembly, a cathode assembly, and a tank.